A Co-Encapsulation of Coenzyme Q10 and Curcumin in Liposomes Coated with Chitosan (Q10-Cur-Lip-Chi) with Enhanced Solubility and Stability for Good Release Performance and Antioxidative Activity.
{"title":"A Co-Encapsulation of Coenzyme Q10 and Curcumin in Liposomes Coated with Chitosan (Q10-Cur-Lip-Chi) with Enhanced Solubility and Stability for Good Release Performance and Antioxidative Activity.","authors":"Linjin Yu, Chuyan Chao, Qinglan Li, Songling Ye, Jiasen Lin, Shuling Zhong, Qiancheng Xuan, Kailin Xu, Suqing Zhao","doi":"10.2174/1567201819666220630122755","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Coenzyme Q10 (Q10) is a powerful lipophilic antioxidant with poor solubility in aqueous media. Curcumin (Cur) is a natural polyphenolic phytochemical molecule with poor aqueous solubility. The liposome is an improved administration of drugs because it is biocompatible and permeable for nutraceutical delivery. Chitosan, a hydrophilic polymer, is often used as a polymer coating for its good biocompatible and biodegradable properties, and its relatively low toxicity level.</p><p><strong>Methods: </strong>Q10 and Cur co-loaded liposomes coated with chitosan (Q10-Cur-Lip-Chi) were constructed. The co-encapsulation of Q10 and Cur in liposomes coated with chitosan was verified by TEM, DLS, DSC, FT-IR, and XRPD. The release profile and antioxidant activity of Q10-Cur-Lip-Chi were accessed.</p><p><strong>Results: </strong>The particle size of Q10-Cur-Lip-Chi was about 1440 nm with narrow particle distribution. A satisfactory encapsulation efficiency (EE) of Q10 was about 98%, and 25% for that of Cur. Q10-Cur- Lip-Chi showed higher solubility and better pH resistance with 98.5% of Q10 and Cur retention at pH 7.0 - 9.0. Q10-Cur-Lip also showed great salt stability with a vesicle size change of less than 5%. PSof Q10-Cur-Lip-Chi changed less than 10% at 4°C of storage. Q10-Cur-Lip-Chi also exhibited a good controlled release profile with its accumulative release of less than 34% for Q10 and 30% for curcumin after 24 h. The Q10-Cur-Lip-Chi performed a synergistic effect on antioxidant activity reaching 41.86±1.84%, which was 5.9 times higher than that of Q10, 2.5 times higher than that of Cur, and 1.7 times higher than that of the mixture.</p><p><strong>Conclusion: </strong>The co-encapsulation Q10-Cur-Lip-Chi improves the solubility and stability of Q10 and Cur for good release performance and antioxidative activity.</p>","PeriodicalId":10842,"journal":{"name":"Current drug delivery","volume":"20 9","pages":"1391-1403"},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current drug delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1567201819666220630122755","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Coenzyme Q10 (Q10) is a powerful lipophilic antioxidant with poor solubility in aqueous media. Curcumin (Cur) is a natural polyphenolic phytochemical molecule with poor aqueous solubility. The liposome is an improved administration of drugs because it is biocompatible and permeable for nutraceutical delivery. Chitosan, a hydrophilic polymer, is often used as a polymer coating for its good biocompatible and biodegradable properties, and its relatively low toxicity level.
Methods: Q10 and Cur co-loaded liposomes coated with chitosan (Q10-Cur-Lip-Chi) were constructed. The co-encapsulation of Q10 and Cur in liposomes coated with chitosan was verified by TEM, DLS, DSC, FT-IR, and XRPD. The release profile and antioxidant activity of Q10-Cur-Lip-Chi were accessed.
Results: The particle size of Q10-Cur-Lip-Chi was about 1440 nm with narrow particle distribution. A satisfactory encapsulation efficiency (EE) of Q10 was about 98%, and 25% for that of Cur. Q10-Cur- Lip-Chi showed higher solubility and better pH resistance with 98.5% of Q10 and Cur retention at pH 7.0 - 9.0. Q10-Cur-Lip also showed great salt stability with a vesicle size change of less than 5%. PSof Q10-Cur-Lip-Chi changed less than 10% at 4°C of storage. Q10-Cur-Lip-Chi also exhibited a good controlled release profile with its accumulative release of less than 34% for Q10 and 30% for curcumin after 24 h. The Q10-Cur-Lip-Chi performed a synergistic effect on antioxidant activity reaching 41.86±1.84%, which was 5.9 times higher than that of Q10, 2.5 times higher than that of Cur, and 1.7 times higher than that of the mixture.
Conclusion: The co-encapsulation Q10-Cur-Lip-Chi improves the solubility and stability of Q10 and Cur for good release performance and antioxidative activity.
期刊介绍:
Current Drug Delivery aims to publish peer-reviewed articles, research articles, short and in-depth reviews, and drug clinical trials studies in the rapidly developing field of drug delivery. Modern drug research aims to build delivery properties of a drug at the design phase, however in many cases this idea cannot be met and the development of delivery systems becomes as important as the development of the drugs themselves.
The journal aims to cover the latest outstanding developments in drug and vaccine delivery employing physical, physico-chemical and chemical methods. The drugs include a wide range of bioactive compounds from simple pharmaceuticals to peptides, proteins, nucleotides, nucleosides and sugars. The journal will also report progress in the fields of transport routes and mechanisms including efflux proteins and multi-drug resistance.
The journal is essential for all pharmaceutical scientists involved in drug design, development and delivery.