A User’s Guide to Machine Learning for Polymeric Biomaterials

IF 4.7 Q1 POLYMER SCIENCE
Travis A. Meyer, Cesar Ramirez, Matthew J. Tamasi and Adam J. Gormley*, 
{"title":"A User’s Guide to Machine Learning for Polymeric Biomaterials","authors":"Travis A. Meyer,&nbsp;Cesar Ramirez,&nbsp;Matthew J. Tamasi and Adam J. Gormley*,&nbsp;","doi":"10.1021/acspolymersau.2c00037","DOIUrl":null,"url":null,"abstract":"<p >The development of novel biomaterials is a challenging process, complicated by a design space with high dimensionality. Requirements for performance in the complex biological environment lead to difficult <i>a priori</i> rational design choices and time-consuming empirical trial-and-error experimentation. Modern data science practices, especially artificial intelligence (AI)/machine learning (ML), offer the promise to help accelerate the identification and testing of next-generation biomaterials. However, it can be a daunting task for biomaterial scientists unfamiliar with modern ML techniques to begin incorporating these useful tools into their development pipeline. This Perspective lays the foundation for a basic understanding of ML while providing a step-by-step guide to new users on how to begin implementing these techniques. A tutorial Python script has been developed walking users through the application of an ML pipeline using data from a real biomaterial design challenge based on group’s research. This tutorial provides an opportunity for readers to see and experiment with ML and its syntax in Python. The Google Colab notebook can be easily accessed and copied from the following URL: www.gormleylab.com/MLcolab</p>","PeriodicalId":72049,"journal":{"name":"ACS polymers Au","volume":"3 2","pages":"141–157"},"PeriodicalIF":4.7000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/63/da/lg2c00037.PMC10103193.pdf","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS polymers Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acspolymersau.2c00037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 11

Abstract

The development of novel biomaterials is a challenging process, complicated by a design space with high dimensionality. Requirements for performance in the complex biological environment lead to difficult a priori rational design choices and time-consuming empirical trial-and-error experimentation. Modern data science practices, especially artificial intelligence (AI)/machine learning (ML), offer the promise to help accelerate the identification and testing of next-generation biomaterials. However, it can be a daunting task for biomaterial scientists unfamiliar with modern ML techniques to begin incorporating these useful tools into their development pipeline. This Perspective lays the foundation for a basic understanding of ML while providing a step-by-step guide to new users on how to begin implementing these techniques. A tutorial Python script has been developed walking users through the application of an ML pipeline using data from a real biomaterial design challenge based on group’s research. This tutorial provides an opportunity for readers to see and experiment with ML and its syntax in Python. The Google Colab notebook can be easily accessed and copied from the following URL: www.gormleylab.com/MLcolab

Abstract Image

高分子生物材料机器学习用户指南
新型生物材料的开发是一个具有挑战性的过程,由于高维度的设计空间而变得复杂。在复杂的生物环境中对性能的要求导致了难以先验的合理设计选择和耗时的经验试错实验。现代数据科学实践,特别是人工智能(AI)/机器学习(ML),有望帮助加快下一代生物材料的识别和测试。然而,对于不熟悉现代ML技术的生物材料科学家来说,开始将这些有用的工具纳入他们的开发管道可能是一项艰巨的任务。这个视角为基本理解ML奠定了基础,同时为新用户提供了如何开始实现这些技术的分步指南。已经开发了一个Python教程脚本,根据小组的研究,使用真实生物材料设计挑战中的数据,引导用户完成ML管道的应用。本教程为读者提供了一个机会,让他们了解和实验Python中的ML及其语法。谷歌Colab笔记本可以从以下网址轻松访问和复制:www.gormleylab.com/MLcolab
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信