Sijia Lu, Chao Fang, Jun Abe, Fanjiang Kong, Baohui Liu
{"title":"Current overview on the genetic basis of key genes involved in soybean domestication","authors":"Sijia Lu, Chao Fang, Jun Abe, Fanjiang Kong, Baohui Liu","doi":"10.1007/s42994-022-00074-5","DOIUrl":null,"url":null,"abstract":"<div><p>Modern crops were created through the domestication and genetic introgression of wild relatives and adaptive differentiation in new environments. Identifying the domestication-related genes and unveiling their molecular diversity provide clues for understanding how the domesticated variants were selected by ancient people, elucidating how and where these crops were domesticated. Molecular genetics and genomics have explored some domestication-related genes in soybean (<i>Glycine max</i>). Here, we summarize recent studies about the quantitative trait locus (QTL) and genes involved in the domestication traits, introduce the functions of these genes, clarify which alleles of domesticated genes were selected during domestication. A deeper understanding of soybean domestication could help to break the bottleneck of modern breeding by highlighting unused genetic diversity not selected in the original domestication process, as well as highlighting promising new avenues for the identification and research of important agronomic traits among different crop species.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2022-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9590488/pdf/42994_2022_Article_74.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"aBIOTECH","FirstCategoryId":"1091","ListUrlMain":"https://link.springer.com/article/10.1007/s42994-022-00074-5","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Modern crops were created through the domestication and genetic introgression of wild relatives and adaptive differentiation in new environments. Identifying the domestication-related genes and unveiling their molecular diversity provide clues for understanding how the domesticated variants were selected by ancient people, elucidating how and where these crops were domesticated. Molecular genetics and genomics have explored some domestication-related genes in soybean (Glycine max). Here, we summarize recent studies about the quantitative trait locus (QTL) and genes involved in the domestication traits, introduce the functions of these genes, clarify which alleles of domesticated genes were selected during domestication. A deeper understanding of soybean domestication could help to break the bottleneck of modern breeding by highlighting unused genetic diversity not selected in the original domestication process, as well as highlighting promising new avenues for the identification and research of important agronomic traits among different crop species.