miR-101-3p improves neuronal morphology and attenuates neuronal apoptosis in ischemic stroke in young mice by downregulating HDAC9.

IF 1.8 4区 医学 Q4 NEUROSCIENCES
Mengru Zhang, Jianjun Wang, Jinfang Li, Fanxin Kong, Songjun Lin
{"title":"miR-101-3p improves neuronal morphology and attenuates neuronal apoptosis in ischemic stroke in young mice by downregulating HDAC9.","authors":"Mengru Zhang,&nbsp;Jianjun Wang,&nbsp;Jinfang Li,&nbsp;Fanxin Kong,&nbsp;Songjun Lin","doi":"10.1515/tnsci-2022-0286","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>MiRNAs play a key role in ischemic stroke (IS). Although miR-101-3p can participate in multiple disease processes, its role and mechanism in IS are not clear. The aim of the present study was to observe the effect of miR-101-3p activation on IS in young mice and the role of HDAC9 in this effect.</p><p><strong>Methods: </strong>The young mice were first subjected to transient middle cerebral artery occlusion (tMCAO) or sham surgery, and the cerebral infarct area was assessed with 2,3,5-triphenyltetrazolium chloride staining. Meanwhile, the expressions of miR-101-3p and HDAC9 were tested using RT-qPCR or western blot. Besides, neuron morphology and apoptosis were confirmed using Nissl staining and TUNEL staining.</p><p><strong>Results: </strong>We first verified that miR-101-3p was downregulated and HDAC9 was upregulated in the brain tissue of tMCAO young mice. Moreover, we proved that overexpression of miR-101-3p could improve cerebral infarction, neuronal morphology, and neuronal apoptosis in tMCAO young mice by lowering the expression of HDAC9.</p><p><strong>Conclusions: </strong>Activation of miR-101-3p can protect against IS in young mice, and its mechanism is relevant to the inhibition of HDAC9. Therefore, miR-101-3p and HDAC9 might be the latent targets for IS therapy.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10224617/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/tnsci-2022-0286","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 2

Abstract

Objective: MiRNAs play a key role in ischemic stroke (IS). Although miR-101-3p can participate in multiple disease processes, its role and mechanism in IS are not clear. The aim of the present study was to observe the effect of miR-101-3p activation on IS in young mice and the role of HDAC9 in this effect.

Methods: The young mice were first subjected to transient middle cerebral artery occlusion (tMCAO) or sham surgery, and the cerebral infarct area was assessed with 2,3,5-triphenyltetrazolium chloride staining. Meanwhile, the expressions of miR-101-3p and HDAC9 were tested using RT-qPCR or western blot. Besides, neuron morphology and apoptosis were confirmed using Nissl staining and TUNEL staining.

Results: We first verified that miR-101-3p was downregulated and HDAC9 was upregulated in the brain tissue of tMCAO young mice. Moreover, we proved that overexpression of miR-101-3p could improve cerebral infarction, neuronal morphology, and neuronal apoptosis in tMCAO young mice by lowering the expression of HDAC9.

Conclusions: Activation of miR-101-3p can protect against IS in young mice, and its mechanism is relevant to the inhibition of HDAC9. Therefore, miR-101-3p and HDAC9 might be the latent targets for IS therapy.

Abstract Image

Abstract Image

Abstract Image

miR-101-3p通过下调hdac - 9,改善缺血性脑卒中幼鼠神经元形态,减轻神经元凋亡。
目的:mirna在缺血性脑卒中(IS)中发挥关键作用。虽然miR-101-3p可以参与多种疾病过程,但其在IS中的作用和机制尚不清楚。本研究的目的是观察miR-101-3p激活对幼龄小鼠IS的影响,以及HDAC9在这一作用中的作用。方法:先对幼鼠进行短暂性大脑中动脉闭塞(tMCAO)或假手术,用2,3,5-三苯四唑氯染色法评估脑梗死面积。同时采用RT-qPCR或western blot检测miR-101-3p、HDAC9的表达。Nissl染色、TUNEL染色证实神经元形态及凋亡情况。结果:我们首先验证了miR-101-3p在tMCAO年轻小鼠脑组织中下调,HDAC9上调。此外,我们证明过表达miR-101-3p可以通过降低HDAC9的表达来改善tMCAO幼龄小鼠的脑梗死、神经元形态和神经元凋亡。结论:激活miR-101-3p对幼龄小鼠IS具有保护作用,其机制与抑制HDAC9有关。因此,miR-101-3p和HDAC9可能是IS治疗的潜在靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
4.80%
发文量
45
审稿时长
>12 weeks
期刊介绍: Translational Neuroscience provides a closer interaction between basic and clinical neuroscientists to expand understanding of brain structure, function and disease, and translate this knowledge into clinical applications and novel therapies of nervous system disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信