Yao Fu, M. Susan Lozier, Tiago Carrilho Biló, Amy S. Bower, Stuart A. Cunningham, Frédéric Cyr, M. Femke de Jong, Brad deYoung, Lewis Drysdale, Neil Fraser, Nora Fried, Heather H. Furey, Guoqi Han, Patricia Handmann, N. Penny Holliday, James Holte, Mark E. Inall, William E. Johns, Sam Jones, Johannes Karstensen, Feili Li, Astrid Pacini, Robert S. Pickart, Darren Rayner, Fiammetta Straneo, Igor Yashayaev
{"title":"Seasonality of the Meridional Overturning Circulation in the subpolar North Atlantic","authors":"Yao Fu, M. Susan Lozier, Tiago Carrilho Biló, Amy S. Bower, Stuart A. Cunningham, Frédéric Cyr, M. Femke de Jong, Brad deYoung, Lewis Drysdale, Neil Fraser, Nora Fried, Heather H. Furey, Guoqi Han, Patricia Handmann, N. Penny Holliday, James Holte, Mark E. Inall, William E. Johns, Sam Jones, Johannes Karstensen, Feili Li, Astrid Pacini, Robert S. Pickart, Darren Rayner, Fiammetta Straneo, Igor Yashayaev","doi":"10.1038/s43247-023-00848-9","DOIUrl":null,"url":null,"abstract":"Understanding the variability of the Atlantic Meridional Overturning Circulation is essential for better predictions of our changing climate. Here we present an updated time series (August 2014 to June 2020) from the Overturning in the Subpolar North Atlantic Program. The 6-year time series allows us to observe the seasonality of the subpolar overturning and meridional heat and freshwater transports. The overturning peaks in late spring and reaches a minimum in early winter, with a peak-to-trough range of 9.0 Sv. The overturning seasonal timing can be explained by winter transformation and the export of dense water, modulated by a seasonally varying Ekman transport. Furthermore, over 55% of the total meridional freshwater transport variability can be explained by its seasonality, largely owing to overturning dynamics. Our results provide the first observational analysis of seasonality in the subpolar North Atlantic overturning and highlight its important contribution to the total overturning variability observed to date. Subpolar overturning in the North Atlantic Ocean shows substantial seasonality, with a maximum in late spring, a minimum in early winter, and a total range of about 9 Sv, according to observations from the OSNAP array between 2014 and 2020.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-13"},"PeriodicalIF":8.1000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10211299/pdf/","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-023-00848-9","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 7
Abstract
Understanding the variability of the Atlantic Meridional Overturning Circulation is essential for better predictions of our changing climate. Here we present an updated time series (August 2014 to June 2020) from the Overturning in the Subpolar North Atlantic Program. The 6-year time series allows us to observe the seasonality of the subpolar overturning and meridional heat and freshwater transports. The overturning peaks in late spring and reaches a minimum in early winter, with a peak-to-trough range of 9.0 Sv. The overturning seasonal timing can be explained by winter transformation and the export of dense water, modulated by a seasonally varying Ekman transport. Furthermore, over 55% of the total meridional freshwater transport variability can be explained by its seasonality, largely owing to overturning dynamics. Our results provide the first observational analysis of seasonality in the subpolar North Atlantic overturning and highlight its important contribution to the total overturning variability observed to date. Subpolar overturning in the North Atlantic Ocean shows substantial seasonality, with a maximum in late spring, a minimum in early winter, and a total range of about 9 Sv, according to observations from the OSNAP array between 2014 and 2020.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.