Brooke E Chambers, Nicole E Weaver, Caroline M Lara, Thanh Khoa Nguyen, Rebecca A Wingert
{"title":"(Zebra)fishing for nephrogenesis genes.","authors":"Brooke E Chambers, Nicole E Weaver, Caroline M Lara, Thanh Khoa Nguyen, Rebecca A Wingert","doi":"10.1080/21688370.2023.2219605","DOIUrl":null,"url":null,"abstract":"<p><p>Kidney disease is a devastating condition affecting millions of people worldwide, where over 100,000 patients in the United States alone remain waiting for a lifesaving organ transplant. Concomitant with a surge in personalized medicine, single-gene mutations, and polygenic risk alleles have been brought to the forefront as core causes of a spectrum of renal disorders. With the increasing prevalence of kidney disease, it is imperative to make substantial strides in the field of kidney genetics. Nephrons, the core functional units of the kidney, are epithelial tubules that act as gatekeepers of body homeostasis by absorbing and secreting ions, water, and small molecules to filter the blood. Each nephron contains a series of proximal and distal segments with explicit metabolic functions. The embryonic zebrafish provides an ideal platform to systematically dissect the genetic cues governing kidney development. Here, we review the use of zebrafish to discover nephrogenesis genes.</p>","PeriodicalId":23469,"journal":{"name":"Tissue Barriers","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11042071/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Barriers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21688370.2023.2219605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Kidney disease is a devastating condition affecting millions of people worldwide, where over 100,000 patients in the United States alone remain waiting for a lifesaving organ transplant. Concomitant with a surge in personalized medicine, single-gene mutations, and polygenic risk alleles have been brought to the forefront as core causes of a spectrum of renal disorders. With the increasing prevalence of kidney disease, it is imperative to make substantial strides in the field of kidney genetics. Nephrons, the core functional units of the kidney, are epithelial tubules that act as gatekeepers of body homeostasis by absorbing and secreting ions, water, and small molecules to filter the blood. Each nephron contains a series of proximal and distal segments with explicit metabolic functions. The embryonic zebrafish provides an ideal platform to systematically dissect the genetic cues governing kidney development. Here, we review the use of zebrafish to discover nephrogenesis genes.
期刊介绍:
Tissue Barriers is the first international interdisciplinary journal that focuses on the architecture, biological roles and regulation of tissue barriers and intercellular junctions. We publish high quality peer-reviewed articles that cover a wide range of topics including structure and functions of the diverse and complex tissue barriers that occur across tissue and cell types, including the molecular composition and dynamics of polarized cell junctions and cell-cell interactions during normal homeostasis, injury and disease state. Tissue barrier formation in regenerative medicine and restoration of tissue and organ function is also of interest. Tissue Barriers publishes several categories of articles including: Original Research Papers, Short Communications, Technical Papers, Reviews, Perspectives and Commentaries, Hypothesis and Meeting Reports. Reviews and Perspectives/Commentaries will typically be invited. We also anticipate to publish special issues that are devoted to rapidly developing or controversial areas of research. Suggestions for topics are welcome. Tissue Barriers objectives: Promote interdisciplinary awareness and collaboration between researchers working with epithelial, epidermal and endothelial barriers and to build a broad and cohesive worldwide community of scientists interesting in this exciting field. Comprehend the enormous complexity of tissue barriers and map cross-talks and interactions between their different cellular and non-cellular components. Highlight the roles of tissue barrier dysfunctions in human diseases. Promote understanding and strategies for restoration of tissue barrier formation and function in regenerative medicine. Accelerate a search for pharmacological enhancers of tissue barriers as potential therapeutic agents. Understand and optimize drug delivery across epithelial and endothelial barriers.