Zhenzhu Xu, Li Mei, Yuhua Chong, Xudong Gao, Shoubao Han, Chengkun Yang, Lin Li
{"title":"A broadband integrated microwave photonic mixer based on balanced photodetection.","authors":"Zhenzhu Xu, Li Mei, Yuhua Chong, Xudong Gao, Shoubao Han, Chengkun Yang, Lin Li","doi":"10.1007/s12200-023-00064-5","DOIUrl":null,"url":null,"abstract":"<p><p>An integrated microwave photonic mixer based on silicon photonic platforms is proposed, which consist of a dual-drive Mach-Zehnder modulator and a balanced photodetector. The modulated optical signals from microwave photonic links can be directly demodulated and down-converted to intermediate frequency (IF) signals by the photonic mixer. The converted signal is obtained by conducting off-chip subtraction of the outputs from the balanced photodetector, and subsequent filtering of the high frequency items by an electrical low-pass filter. Benefiting from balanced detection, the conversion gain of the IF signal is improved by 6 dB, and radio frequency leakage and common-mode noise are suppressed significantly. System-level simulations show that the frequency mixing system has a spurious-free dynamic range of 89 dB·Hz<sup>2/3</sup>, even with deteriorated linearity caused by the two cascaded modulators. The spur suppression ratio of the photonic mixer remains higher than 40 dB when the IF varies from 0.5 to 4 GHz. The electrical-electrical 3 dB bandwidth of frequency conversion is 11 GHz. The integrated frequency mixing approach is quite simple, requiring no extra optical filters or electrical 90° hybrid coupler, which makes the system more stable and with broader bandwidth so that it can meet the potential demand in practical applications.</p>","PeriodicalId":12685,"journal":{"name":"Frontiers of Optoelectronics","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10219908/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Optoelectronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12200-023-00064-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
An integrated microwave photonic mixer based on silicon photonic platforms is proposed, which consist of a dual-drive Mach-Zehnder modulator and a balanced photodetector. The modulated optical signals from microwave photonic links can be directly demodulated and down-converted to intermediate frequency (IF) signals by the photonic mixer. The converted signal is obtained by conducting off-chip subtraction of the outputs from the balanced photodetector, and subsequent filtering of the high frequency items by an electrical low-pass filter. Benefiting from balanced detection, the conversion gain of the IF signal is improved by 6 dB, and radio frequency leakage and common-mode noise are suppressed significantly. System-level simulations show that the frequency mixing system has a spurious-free dynamic range of 89 dB·Hz2/3, even with deteriorated linearity caused by the two cascaded modulators. The spur suppression ratio of the photonic mixer remains higher than 40 dB when the IF varies from 0.5 to 4 GHz. The electrical-electrical 3 dB bandwidth of frequency conversion is 11 GHz. The integrated frequency mixing approach is quite simple, requiring no extra optical filters or electrical 90° hybrid coupler, which makes the system more stable and with broader bandwidth so that it can meet the potential demand in practical applications.
期刊介绍:
Frontiers of Optoelectronics seeks to provide a multidisciplinary forum for a broad mix of peer-reviewed academic papers in order to promote rapid communication and exchange between researchers in China and abroad. It introduces and reflects significant achievements being made in the field of photonics or optoelectronics. The topics include, but are not limited to, semiconductor optoelectronics, nano-photonics, information photonics, energy photonics, ultrafast photonics, biomedical photonics, nonlinear photonics, fiber optics, laser and terahertz technology and intelligent photonics. The journal publishes reviews, research articles, letters, comments, special issues and so on.
Frontiers of Optoelectronics especially encourages papers from new emerging and multidisciplinary areas, papers reflecting the international trends of research and development, and on special topics reporting progress made in the field of optoelectronics. All published papers will reflect the original thoughts of researchers and practitioners on basic theories, design and new technology in optoelectronics.
Frontiers of Optoelectronics is strictly peer-reviewed and only accepts original submissions in English. It is a fully OA journal and the APCs are covered by Higher Education Press and Huazhong University of Science and Technology.
● Presents the latest developments in optoelectronics and optics
● Emphasizes the latest developments of new optoelectronic materials, devices, systems and applications
● Covers industrial photonics, information photonics, biomedical photonics, energy photonics, laser and terahertz technology, and more