Mohd Jawed Khan, Abdul Hafeez, Mohd Aftab Siddiqui
{"title":"Nanocarrier Based Delivery of Berberine: A Critical Review on Pharmaceutical and Preclinical Characteristics of the Bioactive.","authors":"Mohd Jawed Khan, Abdul Hafeez, Mohd Aftab Siddiqui","doi":"10.2174/1389201024666230112141330","DOIUrl":null,"url":null,"abstract":"<p><p>Berberine (BBR) is an isoquinoline alkaloid with several therapeutic properties, including anti-microbial, anti-diarrhea, anti-viral, anti-inflammatory, antihypertensive, anti-tumor, and anti-diabetes. However, its low water solubility, low absorption, first-pass metabolism, nontargeting, and poor bioavailability represent major hurdles to its successful therapeutic applications. Hence, researchers have attempted to enhance the biological and pharmacological activity of BBR to overcome its drawbacks by encapsulation of BBR in micro and nano delivery systems. For the preparation of nanostructured carrier systems of BBR, a range of methods has been developed, and each method has its benefits and characteristics. This review critically describes different types of nanocarriers like liposomes, niosomes, ethosomes, nanoemulsions, polymeric nanoparticles, micelles, dendrimers, and silver and gold nanoparticles that have been used for encapsulation of BBR for different therapeutic applications. The various pharmaceutical characteristics (size, shape, entrapment efficiency, zeta potential, drug release, and drug permeation) of these BBR-loaded nanocarriers have been discussed systematically. Preclinical studies of BBR nanoformulations involving animal models are also discussed.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":"24 11","pages":"1449-1464"},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/1389201024666230112141330","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
Berberine (BBR) is an isoquinoline alkaloid with several therapeutic properties, including anti-microbial, anti-diarrhea, anti-viral, anti-inflammatory, antihypertensive, anti-tumor, and anti-diabetes. However, its low water solubility, low absorption, first-pass metabolism, nontargeting, and poor bioavailability represent major hurdles to its successful therapeutic applications. Hence, researchers have attempted to enhance the biological and pharmacological activity of BBR to overcome its drawbacks by encapsulation of BBR in micro and nano delivery systems. For the preparation of nanostructured carrier systems of BBR, a range of methods has been developed, and each method has its benefits and characteristics. This review critically describes different types of nanocarriers like liposomes, niosomes, ethosomes, nanoemulsions, polymeric nanoparticles, micelles, dendrimers, and silver and gold nanoparticles that have been used for encapsulation of BBR for different therapeutic applications. The various pharmaceutical characteristics (size, shape, entrapment efficiency, zeta potential, drug release, and drug permeation) of these BBR-loaded nanocarriers have been discussed systematically. Preclinical studies of BBR nanoformulations involving animal models are also discussed.
期刊介绍:
Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include:
DNA/protein engineering and processing
Synthetic biotechnology
Omics (genomics, proteomics, metabolomics and systems biology)
Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes)
Drug delivery and targeting
Nanobiotechnology
Molecular pharmaceutics and molecular pharmacology
Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes)
Pharmacokinetics and pharmacodynamics
Applied Microbiology
Bioinformatics (computational biopharmaceutics and modeling)
Environmental biotechnology
Regenerative medicine (stem cells, tissue engineering and biomaterials)
Translational immunology (cell therapies, antibody engineering, xenotransplantation)
Industrial bioprocesses for drug production and development
Biosafety
Biotech ethics
Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome.
Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.