{"title":"Model-based hypothesis tests for the causal mediation of semi-competing risks.","authors":"Yun-Lin Ho, Ju-Sheng Hong, Yen-Tsung Huang","doi":"10.1007/s10985-023-09595-7","DOIUrl":null,"url":null,"abstract":"<p><p>Analyzing the causal mediation of semi-competing risks has become important in medical research. Semi-competing risks refers to a scenario wherein an intermediate event may be censored by a primary event but not vice versa. Causal mediation analyses decompose the effect of an exposure on the primary outcome into an indirect (mediation) effect: an effect mediated through a mediator, and a direct effect: an effect not through the mediator. Here we proposed a model-based testing procedure to examine the indirect effect of the exposure on the primary event through the intermediate event. Under the counterfactual outcome framework, we defined a causal mediation effect using counting process. To assess statistical evidence for the mediation effect, we proposed two tests: an intersection-union test (IUT) and a weighted log-rank test (WLR). The test statistic was developed from a semi-parametric estimator of the mediation effect using a Cox proportional hazards model for the primary event and a series of logistic regression models for the intermediate event. We built a connection between the IUT and WLR. Asymptotic properties of the two tests were derived, and the IUT was determined to be a size [Formula: see text] test and statistically more powerful than the WLR. In numerical simulations, both the model-based IUT and WLR can properly adjust for confounding covariates, and the Type I error rates of the proposed methods are well protected, with the IUT being more powerful than the WLR. Our methods demonstrate the strongly significant effects of hepatitis B or C on the risk of liver cancer mediated through liver cirrhosis incidence in a prospective cohort study. The proposed method is also applicable to surrogate endpoint analyses in clinical trials.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-023-09595-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/3/22 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Analyzing the causal mediation of semi-competing risks has become important in medical research. Semi-competing risks refers to a scenario wherein an intermediate event may be censored by a primary event but not vice versa. Causal mediation analyses decompose the effect of an exposure on the primary outcome into an indirect (mediation) effect: an effect mediated through a mediator, and a direct effect: an effect not through the mediator. Here we proposed a model-based testing procedure to examine the indirect effect of the exposure on the primary event through the intermediate event. Under the counterfactual outcome framework, we defined a causal mediation effect using counting process. To assess statistical evidence for the mediation effect, we proposed two tests: an intersection-union test (IUT) and a weighted log-rank test (WLR). The test statistic was developed from a semi-parametric estimator of the mediation effect using a Cox proportional hazards model for the primary event and a series of logistic regression models for the intermediate event. We built a connection between the IUT and WLR. Asymptotic properties of the two tests were derived, and the IUT was determined to be a size [Formula: see text] test and statistically more powerful than the WLR. In numerical simulations, both the model-based IUT and WLR can properly adjust for confounding covariates, and the Type I error rates of the proposed methods are well protected, with the IUT being more powerful than the WLR. Our methods demonstrate the strongly significant effects of hepatitis B or C on the risk of liver cancer mediated through liver cirrhosis incidence in a prospective cohort study. The proposed method is also applicable to surrogate endpoint analyses in clinical trials.
期刊介绍:
The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.