Hyun Woong Jeong, Dong Sik Chang, June Soo Kim, Young Sun Hwang
{"title":"Role of cathepsin D induced by Porphyromonas gingivalis lipopolysaccharide in periodontitis","authors":"Hyun Woong Jeong, Dong Sik Chang, June Soo Kim, Young Sun Hwang","doi":"10.1111/eos.12923","DOIUrl":null,"url":null,"abstract":"<p>Periodontitis is an inflammatory disease of tooth-supporting tissues caused by oral bacteria. Periodontal ligament loss and alveolar bone destruction occur in progressive periodontitis. Since gingival crevicular fluids (GCF) reflects the inflammatory environment of the periodontal pocket, it is a very important specimen for developing targets for periodontitis diagnosis. An antibody array was performed using GCF collected from healthy participants and patients with periodontitis to identify the proteolytic enzymes involved in periodontitis. Of 21 targets on the antibody array membrane, kallikrein 6 (KLK6), kallikrein 10 (KLK10), cathepsin A (CathA), and cathepsin D (CathD) showed higher levels in periodontitis GCF than in GCF from healthy participants. Lipopolysaccharide stimulation of <i>Porphyromonas gingivalis</i> (PG-LPS) in immortalized gingival fibroblasts only increased CathD protein levels among the four targets. The substrate cleavage activity of CathD was increased in PG-LPS-treated immortalized gingival fibroblast extract. The PG-LPS-induced substrate cleavage effect was abolished by the CathD inhibitor pepstatin A. Osteoclast formation was promoted by treatment with conditioned media from PG-LPS- treated immortalized gingival fibroblasts but inhibited by the CathD inhibitor pepstatin A. These results suggest that PG-LPS affected the osteoclast formation process by increasing CathD expression in cells around the alveolar bone, thereby participating in periodontitis progression.</p>","PeriodicalId":11983,"journal":{"name":"European Journal of Oral Sciences","volume":"131 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Oral Sciences","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eos.12923","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Periodontitis is an inflammatory disease of tooth-supporting tissues caused by oral bacteria. Periodontal ligament loss and alveolar bone destruction occur in progressive periodontitis. Since gingival crevicular fluids (GCF) reflects the inflammatory environment of the periodontal pocket, it is a very important specimen for developing targets for periodontitis diagnosis. An antibody array was performed using GCF collected from healthy participants and patients with periodontitis to identify the proteolytic enzymes involved in periodontitis. Of 21 targets on the antibody array membrane, kallikrein 6 (KLK6), kallikrein 10 (KLK10), cathepsin A (CathA), and cathepsin D (CathD) showed higher levels in periodontitis GCF than in GCF from healthy participants. Lipopolysaccharide stimulation of Porphyromonas gingivalis (PG-LPS) in immortalized gingival fibroblasts only increased CathD protein levels among the four targets. The substrate cleavage activity of CathD was increased in PG-LPS-treated immortalized gingival fibroblast extract. The PG-LPS-induced substrate cleavage effect was abolished by the CathD inhibitor pepstatin A. Osteoclast formation was promoted by treatment with conditioned media from PG-LPS- treated immortalized gingival fibroblasts but inhibited by the CathD inhibitor pepstatin A. These results suggest that PG-LPS affected the osteoclast formation process by increasing CathD expression in cells around the alveolar bone, thereby participating in periodontitis progression.
期刊介绍:
The European Journal of Oral Sciences is an international journal which publishes original research papers within clinical dentistry, on all basic science aspects of structure, chemistry, developmental biology, physiology and pathology of relevant tissues, as well as on microbiology, biomaterials and the behavioural sciences as they relate to dentistry. In general, analytical studies are preferred to descriptive ones. Reviews, Short Communications and Letters to the Editor will also be considered for publication.
The journal is published bimonthly.