Transcript Characteristics on the Susceptibility Difference of Bovine Respiratory Disease.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Hang Cao, Chao Fang, Qiong Wang, Ling-Ling Liu, Wu-Jun Liu
{"title":"Transcript Characteristics on the Susceptibility Difference of Bovine Respiratory Disease.","authors":"Hang Cao,&nbsp;Chao Fang,&nbsp;Qiong Wang,&nbsp;Ling-Ling Liu,&nbsp;Wu-Jun Liu","doi":"10.1155/2023/9934684","DOIUrl":null,"url":null,"abstract":"<p><p>Bovine respiratory disease (BRD) is one of the major health issues in the cattle industry, resulting in significant financial crises globally. There is currently no good treatment, and cattle are made resistant to pneumonia through disease-resistant breeding. The serial blood samples from six Xinjiang brown (XJB) calves were collected for the RNA sequencing (RNA-seq). The obtained six samples were grouped into two groups, in each group as infected with BRD and healthy calves, respectively. In our study, the differential expression mRNAs were detected by using RNA-seq and constructed a protein-protein interaction (PPI) network related to the immunity in cattle. The key genes were identified by protein interaction network analysis, and the results from RNA-seq were verified using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A total of 488 differentially expressed (DE) mRNAs were identified. Importantly, the enrichment analysis of these identified DEGs classified them as mainly enriched in the regulation and immune response processes. The 16 hub genes were found to be related to immune pathways categorized by PPIs analysis. Results revealed that many hub genes were related to the immune response to respiratory disease. These results will provide the basis for a better understanding of the molecular mechanism of bovine resistance to BRD.</p>","PeriodicalId":13988,"journal":{"name":"International Journal of Genomics","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10175020/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1155/2023/9934684","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bovine respiratory disease (BRD) is one of the major health issues in the cattle industry, resulting in significant financial crises globally. There is currently no good treatment, and cattle are made resistant to pneumonia through disease-resistant breeding. The serial blood samples from six Xinjiang brown (XJB) calves were collected for the RNA sequencing (RNA-seq). The obtained six samples were grouped into two groups, in each group as infected with BRD and healthy calves, respectively. In our study, the differential expression mRNAs were detected by using RNA-seq and constructed a protein-protein interaction (PPI) network related to the immunity in cattle. The key genes were identified by protein interaction network analysis, and the results from RNA-seq were verified using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). A total of 488 differentially expressed (DE) mRNAs were identified. Importantly, the enrichment analysis of these identified DEGs classified them as mainly enriched in the regulation and immune response processes. The 16 hub genes were found to be related to immune pathways categorized by PPIs analysis. Results revealed that many hub genes were related to the immune response to respiratory disease. These results will provide the basis for a better understanding of the molecular mechanism of bovine resistance to BRD.

Abstract Image

Abstract Image

Abstract Image

牛呼吸道疾病易感差异的转录物特征。
牛呼吸道疾病(BRD)是养牛业的主要健康问题之一,导致全球重大金融危机。目前还没有很好的治疗方法,通过抗病育种,牛对肺炎有了抵抗力。收集6头新疆棕牛(XJB)的连续血液样本进行RNA测序(RNA-seq)。将获得的6只样本分成两组,每组分别为感染BRD和健康犊牛。本研究采用RNA-seq技术检测差异表达mrna,构建了与牛免疫相关的蛋白-蛋白相互作用(PPI)网络。通过蛋白相互作用网络分析鉴定关键基因,利用逆转录-定量聚合酶链反应(RT-qPCR)对RNA-seq结果进行验证。共鉴定出488个差异表达(DE) mrna。重要的是,对这些鉴定出的deg的富集分析将它们分类为主要富集于调控和免疫应答过程。通过PPIs分析发现16个枢纽基因与免疫通路相关。结果表明,许多中枢基因与呼吸道疾病的免疫应答有关。这些结果将为更好地理解牛抗BRD的分子机制提供基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Genomics
International Journal of Genomics BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOTECHNOLOGY & APPLIED MICROBIOLOGY
CiteScore
5.40
自引率
0.00%
发文量
33
审稿时长
17 weeks
期刊介绍: International Journal of Genomics is a peer-reviewed, Open Access journal that publishes research articles as well as review articles in all areas of genome-scale analysis. Topics covered by the journal include, but are not limited to: bioinformatics, clinical genomics, disease genomics, epigenomics, evolutionary genomics, functional genomics, genome engineering, and synthetic genomics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信