Extracellular alkaline pH enhances migratory behaviors of hepatocellular carcinoma cells as a caution against the indiscriminate application of alkalinizing drug therapy: In vitro microscopic studies
{"title":"Extracellular alkaline pH enhances migratory behaviors of hepatocellular carcinoma cells as a caution against the indiscriminate application of alkalinizing drug therapy: In vitro microscopic studies","authors":"Nemany A.N. Hanafy","doi":"10.1016/j.acthis.2023.152032","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>The migratory process is a highly organized, differentiated, and polarized stage by which many signaling pathways are regulated to control cell migration. Since the significant evidence of migrating cells is the reorganization of the </span>cytoskeleton<span>. In the recent study, the cell migration model was assessed on the fact that any disruption obtained in the cellular monolayer confluent, may cause stimulation for surrounding cells to migrate. We attempt to demonstrate the morphological alterations associated with these migrating cells. In this case, sterilized 1 N NaOH (1 µl) was used as alkaline burnt. It leads to scratching the monolayer of hepatocellular carcinoma (HLF cell line) allowing cells to lose their connection. Scanning electron microscopy (SEM), fluorescence microscopy, light inverted microscopy, and dark field were used for discovering the morphological alterations associated with migrating </span></span>cancer cells<span>. The findings show that cells exhibited distinctive alterations including a polarizing stage, accumulation of the actin nodules in front of the nucleus, and protrusions. Nuclei appeared as lobulated shapes during migration. Lamellipodia<span> and uropod were extended as well. Additionally, TGFβ1 proved its expression in HLF and SNU449 after their stimulation. It is demonstrated that hepatocellular carcinoma cells<span> can migrate after their stimulation and there is a caution against the indiscriminate application of alkalinizing drug therapy.</span></span></span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0065128123000387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
Abstract
The migratory process is a highly organized, differentiated, and polarized stage by which many signaling pathways are regulated to control cell migration. Since the significant evidence of migrating cells is the reorganization of the cytoskeleton. In the recent study, the cell migration model was assessed on the fact that any disruption obtained in the cellular monolayer confluent, may cause stimulation for surrounding cells to migrate. We attempt to demonstrate the morphological alterations associated with these migrating cells. In this case, sterilized 1 N NaOH (1 µl) was used as alkaline burnt. It leads to scratching the monolayer of hepatocellular carcinoma (HLF cell line) allowing cells to lose their connection. Scanning electron microscopy (SEM), fluorescence microscopy, light inverted microscopy, and dark field were used for discovering the morphological alterations associated with migrating cancer cells. The findings show that cells exhibited distinctive alterations including a polarizing stage, accumulation of the actin nodules in front of the nucleus, and protrusions. Nuclei appeared as lobulated shapes during migration. Lamellipodia and uropod were extended as well. Additionally, TGFβ1 proved its expression in HLF and SNU449 after their stimulation. It is demonstrated that hepatocellular carcinoma cells can migrate after their stimulation and there is a caution against the indiscriminate application of alkalinizing drug therapy.