{"title":"HYDROPHOBICITY IMPROVEMENTS OF POLYMERS USED IN BIOMEDICAL APPLICATIONS.","authors":"Mohammad Motaher Hossain, Vinay Reddy Lokasani","doi":"10.1115/IMECE2022-95610","DOIUrl":null,"url":null,"abstract":"<p><p>Improvement in hydrophobicity is important for polymers used in various applications such as biomedical applications, as it can delay their degradation due to long-term exposure to moisture environments. Although a number of surface modification techniques have been developed over the years to improve hydrophobicity, their specific influences on hydrophobicity enhancement as well as long-term mechanical and tribological performances are yet to be fully understood. In this study, surface textures, with variation in type and geometry, are introduced on Ultrahigh Molecular Weight Polyethylene (UHMWPE) and High Density Polyethylene (HDPE) surfaces to study the effect of surface modification on hydrophobicity and long-term mechanical and tribological performances. Based on the theoretical study using Wenzel and Cassie-Baxter models, surface textures of various types and dimension are introduced on UHMWPE and HDPE surfaces. The results show that introduction of surface textures significantly improves the hydrophobicity of polymers. Specific relationship between texture type and geometry, and improvement in hydrophobicity is explored. Based on the comparison between experimental results and theoretical models, transition state modeling seems to be more suitable in describing the change in hydrophobicity with the addition of surface texture. The study provides useful guidelines to improve hydrophobicity of polymers for biomedical applications.</p>","PeriodicalId":73488,"journal":{"name":"International Mechanical Engineering Congress and Exposition : [proceedings]. International Mechanical Engineering Congress and Exposition","volume":"2022 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10205070/pdf/nihms-1897956.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mechanical Engineering Congress and Exposition : [proceedings]. International Mechanical Engineering Congress and Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2022-95610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/8 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Improvement in hydrophobicity is important for polymers used in various applications such as biomedical applications, as it can delay their degradation due to long-term exposure to moisture environments. Although a number of surface modification techniques have been developed over the years to improve hydrophobicity, their specific influences on hydrophobicity enhancement as well as long-term mechanical and tribological performances are yet to be fully understood. In this study, surface textures, with variation in type and geometry, are introduced on Ultrahigh Molecular Weight Polyethylene (UHMWPE) and High Density Polyethylene (HDPE) surfaces to study the effect of surface modification on hydrophobicity and long-term mechanical and tribological performances. Based on the theoretical study using Wenzel and Cassie-Baxter models, surface textures of various types and dimension are introduced on UHMWPE and HDPE surfaces. The results show that introduction of surface textures significantly improves the hydrophobicity of polymers. Specific relationship between texture type and geometry, and improvement in hydrophobicity is explored. Based on the comparison between experimental results and theoretical models, transition state modeling seems to be more suitable in describing the change in hydrophobicity with the addition of surface texture. The study provides useful guidelines to improve hydrophobicity of polymers for biomedical applications.