Multiomics and artificial intelligence enabled peripheral blood-based prediction of amnestic mild cognitive impairment

IF 3.2 4区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Yota Tatara , Hiromi Yamazaki , Fumiki Katsuoka , Mitsuru Chiba , Daisuke Saigusa , Shuya Kasai , Tomohiro Nakamura , Jin Inoue , Yuichi Aoki , Miho Shoji , Ikuko N. Motoike , Yoshinori Tamada , Katsuhito Hashizume , Mikio Shoji , Kengo Kinoshita , Koichi Murashita , Shigeyuki Nakaji , Masayuki Yamamoto , Ken Itoh
{"title":"Multiomics and artificial intelligence enabled peripheral blood-based prediction of amnestic mild cognitive impairment","authors":"Yota Tatara ,&nbsp;Hiromi Yamazaki ,&nbsp;Fumiki Katsuoka ,&nbsp;Mitsuru Chiba ,&nbsp;Daisuke Saigusa ,&nbsp;Shuya Kasai ,&nbsp;Tomohiro Nakamura ,&nbsp;Jin Inoue ,&nbsp;Yuichi Aoki ,&nbsp;Miho Shoji ,&nbsp;Ikuko N. Motoike ,&nbsp;Yoshinori Tamada ,&nbsp;Katsuhito Hashizume ,&nbsp;Mikio Shoji ,&nbsp;Kengo Kinoshita ,&nbsp;Koichi Murashita ,&nbsp;Shigeyuki Nakaji ,&nbsp;Masayuki Yamamoto ,&nbsp;Ken Itoh","doi":"10.1016/j.retram.2022.103367","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Since dementia is preventable with early interventions, biomarkers that assist in diagnosing early stages of dementia, such as mild cognitive impairment (MCI), are urgently needed.</p></div><div><h3>Methods</h3><p>Multiomics analysis of amnestic MCI (aMCI) peripheral blood (<em>n</em> = 25) was performed covering the transcriptome, microRNA, proteome, and metabolome. Validation analysis for microRNAs was conducted in an independent cohort (<em>n</em> = 12). Artificial intelligence was used to identify the most important features for predicting aMCI.</p></div><div><h3>Findings</h3><p>We found that hsa-miR-4455 is the best biomarker in all omics analyses. The diagnostic index taking a ratio of hsa-miR-4455 to hsa-let-7b-3p predicted aMCI patients against healthy subjects with 97% overall accuracy. An integrated review of multiomics data suggested that a subset of T cells and the GCN (general control nonderepressible) pathway are associated with aMCI.</p></div><div><h3>Interpretation</h3><p>The multiomics approach has enabled aMCI biomarkers with high specificity and illuminated the accompanying changes in peripheral blood. Future large-scale studies are necessary to validate candidate biomarkers for clinical use.</p></div>","PeriodicalId":54260,"journal":{"name":"Current Research in Translational Medicine","volume":"71 1","pages":"Article 103367"},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Research in Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452318622000356","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 3

Abstract

Background

Since dementia is preventable with early interventions, biomarkers that assist in diagnosing early stages of dementia, such as mild cognitive impairment (MCI), are urgently needed.

Methods

Multiomics analysis of amnestic MCI (aMCI) peripheral blood (n = 25) was performed covering the transcriptome, microRNA, proteome, and metabolome. Validation analysis for microRNAs was conducted in an independent cohort (n = 12). Artificial intelligence was used to identify the most important features for predicting aMCI.

Findings

We found that hsa-miR-4455 is the best biomarker in all omics analyses. The diagnostic index taking a ratio of hsa-miR-4455 to hsa-let-7b-3p predicted aMCI patients against healthy subjects with 97% overall accuracy. An integrated review of multiomics data suggested that a subset of T cells and the GCN (general control nonderepressible) pathway are associated with aMCI.

Interpretation

The multiomics approach has enabled aMCI biomarkers with high specificity and illuminated the accompanying changes in peripheral blood. Future large-scale studies are necessary to validate candidate biomarkers for clinical use.

多组学和人工智能使基于外周血的健忘轻度认知障碍预测成为可能
背景由于痴呆症可以通过早期干预来预防,因此迫切需要有助于诊断痴呆症早期阶段的生物标志物,如轻度认知障碍(MCI)。方法对25例健忘症MCI外周血进行转录组、微小RNA、蛋白质组和代谢组的多组学分析。在一个独立的队列中进行了微小RNA的验证分析(n=12)。人工智能被用于识别预测aMCI的最重要特征。发现我们发现hsa-miR-4455是所有组学分析中最好的生物标志物。采用hsa-miR-4455与hsa-let-7b-3p比值的诊断指数预测aMCI患者与健康受试者的总体准确率为97%。对多组学数据的综合审查表明,T细胞的一个子集和GCN(一般控制不可抑制)途径与aMCI有关。解释多组学方法使aMCI生物标志物具有高特异性,并阐明了外周血的伴随变化。未来有必要进行大规模研究,以验证临床使用的候选生物标志物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Research in Translational Medicine
Current Research in Translational Medicine Biochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
7.00
自引率
4.90%
发文量
51
审稿时长
45 days
期刊介绍: Current Research in Translational Medicine is a peer-reviewed journal, publishing worldwide clinical and basic research in the field of hematology, immunology, infectiology, hematopoietic cell transplantation, and cellular and gene therapy. The journal considers for publication English-language editorials, original articles, reviews, and short reports including case-reports. Contributions are intended to draw attention to experimental medicine and translational research. Current Research in Translational Medicine periodically publishes thematic issues and is indexed in all major international databases (2017 Impact Factor is 1.9). Core areas covered in Current Research in Translational Medicine are: Hematology, Immunology, Infectiology, Hematopoietic, Cell Transplantation, Cellular and Gene Therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信