Research on the application of the blended BOPPPS based on an online and offline mixed teaching model in the course of fermentation engineering in applied universities
{"title":"Research on the application of the blended BOPPPS based on an online and offline mixed teaching model in the course of fermentation engineering in applied universities","authors":"Siqiang Li, Quanlan Liu, Shuang Guo, Yun Li, Fujia Chen, Chunhong Wang, Mingcheng Wang, Junhe Liu, Xianli Liu, Duanhao Wang, Enzhong Li","doi":"10.1002/bmb.21716","DOIUrl":null,"url":null,"abstract":"<p>This study aimed to investigate the teaching effect of the blended BOPPPS based on an online and offline mixed teaching model (“B + BOPPPS”) in the course of fermentation engineering in applied universities. The participants were 142 undergraduates majoring from the course of fermentation engineering in Food Science and Engineering in 2019 and 2020 in Huanghuai University, Zhumadian city, Henan province, China. The students in the control group (68 students) were taught in 2019, and the students in the experimental group (74 students) were taught in 2020. The traditional teaching method and “B + BOPPPS” were implemented, respectively. The teaching effect was evaluated using the questionnaire survey of course satisfaction and theoretical knowledge test. The results showed that the scores of the theoretical knowledge test in the experimental group adopting “B + BOPPPS” were significantly higher than those in the control group, and the difference was statistically significant (<i>p</i> < 0.01). The students had a good evaluation of the “B + BOPPPS” in many aspects, which included achieving learning goals, providing in-depth understanding of knowledge points, stimulating interest in learning, training in the ability to analyze and think about problems, and so on. The results suggested that “B + BOPPPS” could stimulate students' interest in learning and improve their subjective initiative. They could also improve students' ability to master and apply knowledge, which was conducive to improving the theoretical teaching quality of the course of fermentation engineering.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":"51 3","pages":"244-253"},"PeriodicalIF":1.2000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Molecular Biology Education","FirstCategoryId":"95","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmb.21716","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study aimed to investigate the teaching effect of the blended BOPPPS based on an online and offline mixed teaching model (“B + BOPPPS”) in the course of fermentation engineering in applied universities. The participants were 142 undergraduates majoring from the course of fermentation engineering in Food Science and Engineering in 2019 and 2020 in Huanghuai University, Zhumadian city, Henan province, China. The students in the control group (68 students) were taught in 2019, and the students in the experimental group (74 students) were taught in 2020. The traditional teaching method and “B + BOPPPS” were implemented, respectively. The teaching effect was evaluated using the questionnaire survey of course satisfaction and theoretical knowledge test. The results showed that the scores of the theoretical knowledge test in the experimental group adopting “B + BOPPPS” were significantly higher than those in the control group, and the difference was statistically significant (p < 0.01). The students had a good evaluation of the “B + BOPPPS” in many aspects, which included achieving learning goals, providing in-depth understanding of knowledge points, stimulating interest in learning, training in the ability to analyze and think about problems, and so on. The results suggested that “B + BOPPPS” could stimulate students' interest in learning and improve their subjective initiative. They could also improve students' ability to master and apply knowledge, which was conducive to improving the theoretical teaching quality of the course of fermentation engineering.
期刊介绍:
The aim of BAMBED is to enhance teacher preparation and student learning in Biochemistry, Molecular Biology, and related sciences such as Biophysics and Cell Biology, by promoting the world-wide dissemination of educational materials. BAMBED seeks and communicates articles on many topics, including:
Innovative techniques in teaching and learning.
New pedagogical approaches.
Research in biochemistry and molecular biology education.
Reviews on emerging areas of Biochemistry and Molecular Biology to provide background for the preparation of lectures, seminars, student presentations, dissertations, etc.
Historical Reviews describing "Paths to Discovery".
Novel and proven laboratory experiments that have both skill-building and discovery-based characteristics.
Reviews of relevant textbooks, software, and websites.
Descriptions of software for educational use.
Descriptions of multimedia materials such as tutorials on various aspects of biochemistry and molecular biology.