Angela M. Zigarelli, Hanna M. Venera, Brody A. Receveur, Jack M. Wolf, Jason Westra, Nathan L. Tintle
{"title":"Multimarker omnibus tests by leveraging individual marker summary statistics from large biobanks","authors":"Angela M. Zigarelli, Hanna M. Venera, Brody A. Receveur, Jack M. Wolf, Jason Westra, Nathan L. Tintle","doi":"10.1111/ahg.12495","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n \n <p>As biobanks become increasingly popular, access to genotypic and phenotypic data continues to increase in the form of precomputed summary statistics (PCSS). Widespread accessibility of PCSS alleviates many issues related to biobank data, including that of data privacy and confidentiality, as well as high computational costs. However, questions remain about how to maximally leverage PCSS for downstream statistical analyses. Here we present a novel method for testing the association of an arbitrary number of single nucleotide variants (SNVs) on a linear combination of phenotypes after adjusting for covariates for common multimarker tests (e.g., SKAT, SKAT-O) without access to individual patient-level data (IPD). We validate exact formulas for each method, and demonstrate their accuracy through simulation studies and an application to fatty acid phenotypic data from the Framingham Heart Study.</p>\n </section>\n </div>","PeriodicalId":8085,"journal":{"name":"Annals of Human Genetics","volume":"87 3","pages":"125-136"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ahg.12495","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ahg.12495","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
As biobanks become increasingly popular, access to genotypic and phenotypic data continues to increase in the form of precomputed summary statistics (PCSS). Widespread accessibility of PCSS alleviates many issues related to biobank data, including that of data privacy and confidentiality, as well as high computational costs. However, questions remain about how to maximally leverage PCSS for downstream statistical analyses. Here we present a novel method for testing the association of an arbitrary number of single nucleotide variants (SNVs) on a linear combination of phenotypes after adjusting for covariates for common multimarker tests (e.g., SKAT, SKAT-O) without access to individual patient-level data (IPD). We validate exact formulas for each method, and demonstrate their accuracy through simulation studies and an application to fatty acid phenotypic data from the Framingham Heart Study.
期刊介绍:
Annals of Human Genetics publishes material directly concerned with human genetics or the application of scientific principles and techniques to any aspect of human inheritance. Papers that describe work on other species that may be relevant to human genetics will also be considered. Mathematical models should include examples of application to data where possible.
Authors are welcome to submit Supporting Information, such as data sets or additional figures or tables, that will not be published in the print edition of the journal, but which will be viewable via the online edition and stored on the website.