CdSe/ZnS QDs embedded polyethersulfone fluorescence composite membrane for sensitive detection of copper ions in various drinks.

IF 1.4 4区 农林科学 Q4 ENVIRONMENTAL SCIENCES
Yajie Liu, Yao Zhu, Xinyu Liu, Liming Dong, Qinglin Zheng, Shu Kang, Yahui He, Jing Wang, A M Abd El-Aty
{"title":"CdSe/ZnS QDs embedded polyethersulfone fluorescence composite membrane for sensitive detection of copper ions in various drinks.","authors":"Yajie Liu,&nbsp;Yao Zhu,&nbsp;Xinyu Liu,&nbsp;Liming Dong,&nbsp;Qinglin Zheng,&nbsp;Shu Kang,&nbsp;Yahui He,&nbsp;Jing Wang,&nbsp;A M Abd El-Aty","doi":"10.1080/03601234.2023.2172280","DOIUrl":null,"url":null,"abstract":"<p><p>The copper ion was detected rapidly by a novel sensing membrane in this paper for its damage to health and the environment. CdSe/ZnS QDs modified polyethersulfone membrane (QDs@PESM) was made by phase-inversion method using a membrane separation technique and quantum dots (QDs). When the sample passed through the membrane, the copper ions in the sample caused the membrane's fluorescence to be quenched. The fluorescence quenching value of the membrane is used to calculate the concentration of copper ions. With <i>R</i><sup>2</sup>= 0.9964, Cu<sup>2+</sup>could be quantitatively detected over a wide concentration range (10-1000 μg/L). The method's LOD and LOQ were 4.27 and 14.23 μg/L, respectively. When the CdSe/ZnS QDs@PESM was used to analyze Cu<sup>2+</sup> in various real drinks, including well water, baijiu, orange juice, beer, and milk, the recovery ranged from 79.1 to 123.9%, indicating that the CdSe/ZnS QDs@PESM can be used as a rapid, simple and reliable method to determine Cu<sup>2+</sup> in various matrices.</p>","PeriodicalId":15720,"journal":{"name":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/03601234.2023.2172280","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2

Abstract

The copper ion was detected rapidly by a novel sensing membrane in this paper for its damage to health and the environment. CdSe/ZnS QDs modified polyethersulfone membrane (QDs@PESM) was made by phase-inversion method using a membrane separation technique and quantum dots (QDs). When the sample passed through the membrane, the copper ions in the sample caused the membrane's fluorescence to be quenched. The fluorescence quenching value of the membrane is used to calculate the concentration of copper ions. With R2= 0.9964, Cu2+could be quantitatively detected over a wide concentration range (10-1000 μg/L). The method's LOD and LOQ were 4.27 and 14.23 μg/L, respectively. When the CdSe/ZnS QDs@PESM was used to analyze Cu2+ in various real drinks, including well water, baijiu, orange juice, beer, and milk, the recovery ranged from 79.1 to 123.9%, indicating that the CdSe/ZnS QDs@PESM can be used as a rapid, simple and reliable method to determine Cu2+ in various matrices.

CdSe/ZnS量子点包埋聚醚砜荧光复合膜对各种饮料中铜离子的灵敏检测。
由于铜离子对人体健康和环境的危害,本文采用一种新型传感膜对其进行了快速检测。利用膜分离技术和量子点(QDs),采用相变法制备了CdSe/ZnS量子点改性聚醚砜膜(QDs@PESM)。当样品通过膜时,样品中的铜离子使膜的荧光被猝灭。膜的荧光猝灭值用于计算铜离子的浓度。R2= 0.9964,可在10 ~ 1000 μg/L的浓度范围内定量检测Cu2+。该方法的定量限和定量限分别为4.27和14.23 μg/L。利用CdSe/ZnS QDs@PESM对井水、白酒、橙汁、啤酒、牛奶等多种实际饮料中的Cu2+进行分析,回收率为79.1 ~ 123.9%,表明CdSe/ZnS QDs@PESM可作为一种快速、简便、可靠的测定各种基质中Cu2+的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.00
自引率
5.00%
发文量
87
审稿时长
1 months
期刊介绍: 12 issues per year Abstracted/indexed in: Agricola; Analytical Abstracts; ASFA 3: Aquatic Pollution & Environmental Quality; BioSciences Information Service of Biological Abstracts (BIOSIS); CAB Abstracts; CAB AGBiotech News and Information; CAB Irrigation & Drainage Abstracts; CAB Soils & Fertilizers Abstracts; Chemical Abstracts Service Plus; CSA Aluminum Industry Abstracts; CSA ANTE: Abstracts in New Technology and Engineering; CSA ASFA 3 Aquatic Pollution and Environmental Quality; CSA ASSIA: Applied Social Sciences Index & Abstracts; CSA Ecology Abstracts; CSA Entomology Abstracts; CSA Environmental Engineering Abstracts; CSA Health & Safety Science Abstracts; CSA Pollution Abstracts; CSA Toxicology Abstracts; CSA Water Resource Abstracts; EBSCOhost Online Research Databases; Elsevier BIOBASE/Current Awareness in Biological Sciences; Elsevier Engineering Information: EMBASE/Excerpta Medica/ Engineering Index/COMPENDEX PLUS; Environment Abstracts; Environmental Knowledge; Food Science and Technology Abstracts; Geo Abstracts; Geobase; Food Science; Index Medicus/ MEDLINE; INIST-Pascal/ CNRS; NIOSHTIC; ISI BIOSIS Previews; Pesticides; Food Contaminants and Agricultural Wastes: Analytical Abstracts; Pollution Abstracts; PubSCIENCE; Reference Update; Research Alert; Science Citation Index Expanded (SCIE); and Water Resources Abstracts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信