Evaluation of the natural history of disease by combining incident and prevalent cohorts: application to the Nun Study.

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Lifetime Data Analysis Pub Date : 2023-10-01 Epub Date: 2023-05-20 DOI:10.1007/s10985-023-09602-x
Daewoo Pak, Jing Ning, Richard J Kryscio, Yu Shen
{"title":"Evaluation of the natural history of disease by combining incident and prevalent cohorts: application to the Nun Study.","authors":"Daewoo Pak, Jing Ning, Richard J Kryscio, Yu Shen","doi":"10.1007/s10985-023-09602-x","DOIUrl":null,"url":null,"abstract":"<p><p>The Nun study is a well-known longitudinal epidemiology study of aging and dementia that recruited elderly nuns who were not yet diagnosed with dementia (i.e., incident cohort) and who had dementia prior to entry (i.e., prevalent cohort). In such a natural history of disease study, multistate modeling of the combined data from both incident and prevalent cohorts is desirable to improve the efficiency of inference. While important, the multistate modeling approaches for the combined data have been scarcely used in practice because prevalent samples do not provide the exact date of disease onset and do not represent the target population due to left-truncation. In this paper, we demonstrate how to adequately combine both incident and prevalent cohorts to examine risk factors for every possible transition in studying the natural history of dementia. We adapt a four-state nonhomogeneous Markov model to characterize all transitions between different clinical stages, including plausible reversible transitions. The estimating procedure using the combined data leads to efficiency gains for every transition compared to those from the incident cohort data only.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199741/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-023-09602-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The Nun study is a well-known longitudinal epidemiology study of aging and dementia that recruited elderly nuns who were not yet diagnosed with dementia (i.e., incident cohort) and who had dementia prior to entry (i.e., prevalent cohort). In such a natural history of disease study, multistate modeling of the combined data from both incident and prevalent cohorts is desirable to improve the efficiency of inference. While important, the multistate modeling approaches for the combined data have been scarcely used in practice because prevalent samples do not provide the exact date of disease onset and do not represent the target population due to left-truncation. In this paper, we demonstrate how to adequately combine both incident and prevalent cohorts to examine risk factors for every possible transition in studying the natural history of dementia. We adapt a four-state nonhomogeneous Markov model to characterize all transitions between different clinical stages, including plausible reversible transitions. The estimating procedure using the combined data leads to efficiency gains for every transition compared to those from the incident cohort data only.

Abstract Image

Abstract Image

Abstract Image

结合发病和流行人群对疾病自然史的评估:在Nun研究中的应用。
Nun研究是一项著名的老龄化和痴呆症纵向流行病学研究,招募了尚未被诊断为痴呆症的老年修女(即事件队列)和在进入之前患有痴呆症的年长修女(即流行队列)。在这样的疾病自然史研究中,希望对来自事件和流行队列的组合数据进行多状态建模,以提高推理效率。尽管很重要,但组合数据的多状态建模方法在实践中几乎没有使用,因为流行样本不能提供疾病发作的确切日期,并且由于左截断,不能代表目标人群。在这篇论文中,我们展示了如何充分结合事件和流行队列,以检查在研究痴呆自然史时每一个可能转变的风险因素。我们采用四态非齐次马尔可夫模型来表征不同临床阶段之间的所有转变,包括看似合理的可逆转变。与仅来自事件队列数据的估计程序相比,使用组合数据的估计过程导致每次转换的效率提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信