Protein Diffusion Along Protein and DNA Lattices: Role of Electrostatics and Disordered Regions.

IF 10.4 1区 生物学 Q1 BIOPHYSICS
Lavi S Bigman, Yaakov Levy
{"title":"Protein Diffusion Along Protein and DNA Lattices: Role of Electrostatics and Disordered Regions.","authors":"Lavi S Bigman,&nbsp;Yaakov Levy","doi":"10.1146/annurev-biophys-111622-091220","DOIUrl":null,"url":null,"abstract":"<p><p>Diffusion is a pervasive process present in a broad spectrum of cellular reactions. Its mathematical description has existed for nearly two centuries and permits the construction of simple rules for evaluating the characteristic timescales of diffusive processes and some of their determinants. Although the term diffusion originally referred to random motions in three-dimensional (3D) media, several biological diffusion processes in lower dimensions have been reported. One-dimensional (1D) diffusions have been reported, for example, for translocations of various proteins along DNA or protein (e.g., microtubule) lattices and translation of helical peptides along the coiled-coil interface. Two-dimensional (2D) diffusion has been shown for dynamics of proteins along membranes. The microscopic mechanisms of these 1-3D diffusions may vary significantly depending on the nature of the diffusing molecules, the substrate, and the interactions between them. In this review, we highlight some key examples of 1-3D biomolecular diffusion processes and illustrate the roles that electrostatic interactions and intrinsic disorder may play in modulating these processes.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":null,"pages":null},"PeriodicalIF":10.4000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-biophys-111622-091220","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 3

Abstract

Diffusion is a pervasive process present in a broad spectrum of cellular reactions. Its mathematical description has existed for nearly two centuries and permits the construction of simple rules for evaluating the characteristic timescales of diffusive processes and some of their determinants. Although the term diffusion originally referred to random motions in three-dimensional (3D) media, several biological diffusion processes in lower dimensions have been reported. One-dimensional (1D) diffusions have been reported, for example, for translocations of various proteins along DNA or protein (e.g., microtubule) lattices and translation of helical peptides along the coiled-coil interface. Two-dimensional (2D) diffusion has been shown for dynamics of proteins along membranes. The microscopic mechanisms of these 1-3D diffusions may vary significantly depending on the nature of the diffusing molecules, the substrate, and the interactions between them. In this review, we highlight some key examples of 1-3D biomolecular diffusion processes and illustrate the roles that electrostatic interactions and intrinsic disorder may play in modulating these processes.

蛋白质沿蛋白质和DNA晶格扩散:静电和无序区域的作用。
扩散是广泛存在于细胞反应中的普遍过程。它的数学描述已经存在了近两个世纪,并允许构建简单的规则来评估扩散过程的特征时间尺度及其一些决定因素。虽然扩散一词最初是指三维(3D)介质中的随机运动,但一些低维生物扩散过程已被报道。一维(1D)扩散已被报道,例如,各种蛋白质沿DNA或蛋白质(如微管)晶格的易位以及螺旋肽沿盘绕界面的翻译。二维(2D)扩散已被证明是蛋白质沿着膜的动力学。这些1-3D扩散的微观机制可能会根据扩散分子的性质、底物和它们之间的相互作用而有很大的不同。在这篇综述中,我们重点介绍了一些1-3D生物分子扩散过程的关键例子,并说明了静电相互作用和内在无序可能在调节这些过程中发挥的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual Review of Biophysics
Annual Review of Biophysics 生物-生物物理
CiteScore
21.00
自引率
0.00%
发文量
25
期刊介绍: The Annual Review of Biophysics, in publication since 1972, covers significant developments in the field of biophysics, including macromolecular structure, function and dynamics, theoretical and computational biophysics, molecular biophysics of the cell, physical systems biology, membrane biophysics, biotechnology, nanotechnology, and emerging techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信