Roza Motavalli , Maryam Hosseini , Mohammad Sadegh Soltani-Zangbar , Abbas Karimi , Mohammadreza Sadeghi , Sanam Dolati , Mehdi Yousefi , Jalal Etemadi
{"title":"Evaluation of the immune checkpoint factors in idiopathic membranous nephropathy","authors":"Roza Motavalli , Maryam Hosseini , Mohammad Sadegh Soltani-Zangbar , Abbas Karimi , Mohammadreza Sadeghi , Sanam Dolati , Mehdi Yousefi , Jalal Etemadi","doi":"10.1016/j.mcp.2023.101914","DOIUrl":null,"url":null,"abstract":"<div><p>Idiopathic membranous nephropathy (IMN), a single-organ autoimmune disease, is recognized by autoantibodies to podocyte proteins and identified as the most frequent cause of nephrotic syndrome in adults. T cells are important contributors in autoimmunity since they promote B–cell development, antibody production, direct inflammation, and organ tissue cytotoxicity. This study investigated the inhibitory immune checkpoint (ICP) receptors expressed on T lymphocytes and other immune cells. Thus, PBMCs from IMN patients were obtained before treatment, and the levels of ICPs such as programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA4), lymphocyte activation gene-3 (LAG-3), and T cell immunoglobulin-3 (TIM-3) were examined at both gene and protein expression using real time PCR and Western blot tests respectively. The results illustrated that gene expression levels of ICPs reduced significantly in comparison to the control which were verified by related fold changes of protein expression sequentially. Our study revealed that CTLA-4, PD-1, TIM-3, and LAG-3 expression is impaired in IMN patients before treatment which could be a potential target for therapy.</p></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":"69 ","pages":"Article 101914"},"PeriodicalIF":2.3000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Probes","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890850823000233","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Idiopathic membranous nephropathy (IMN), a single-organ autoimmune disease, is recognized by autoantibodies to podocyte proteins and identified as the most frequent cause of nephrotic syndrome in adults. T cells are important contributors in autoimmunity since they promote B–cell development, antibody production, direct inflammation, and organ tissue cytotoxicity. This study investigated the inhibitory immune checkpoint (ICP) receptors expressed on T lymphocytes and other immune cells. Thus, PBMCs from IMN patients were obtained before treatment, and the levels of ICPs such as programmed cell death protein 1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA4), lymphocyte activation gene-3 (LAG-3), and T cell immunoglobulin-3 (TIM-3) were examined at both gene and protein expression using real time PCR and Western blot tests respectively. The results illustrated that gene expression levels of ICPs reduced significantly in comparison to the control which were verified by related fold changes of protein expression sequentially. Our study revealed that CTLA-4, PD-1, TIM-3, and LAG-3 expression is impaired in IMN patients before treatment which could be a potential target for therapy.
期刊介绍:
MCP - Advancing biology through–omics and bioinformatic technologies wants to capture outcomes from the current revolution in molecular technologies and sciences. The journal has broadened its scope and embraces any high quality research papers, reviews and opinions in areas including, but not limited to, molecular biology, cell biology, biochemistry, immunology, physiology, epidemiology, ecology, virology, microbiology, parasitology, genetics, evolutionary biology, genomics (including metagenomics), bioinformatics, proteomics, metabolomics, glycomics, and lipidomics. Submissions with a technology-driven focus on understanding normal biological or disease processes as well as conceptual advances and paradigm shifts are particularly encouraged. The Editors welcome fundamental or applied research areas; pre-submission enquiries about advanced draft manuscripts are welcomed. Top quality research and manuscripts will be fast-tracked.