A nonparametric instrumental approach to confounding in competing risks models.

IF 1.2 3区 数学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Lifetime Data Analysis Pub Date : 2023-10-01 Epub Date: 2023-05-09 DOI:10.1007/s10985-023-09599-3
Jad Beyhum, Jean-Pierre Florens, Ingrid Van Keilegom
{"title":"A nonparametric instrumental approach to confounding in competing risks models.","authors":"Jad Beyhum, Jean-Pierre Florens, Ingrid Van Keilegom","doi":"10.1007/s10985-023-09599-3","DOIUrl":null,"url":null,"abstract":"<p><p>This paper discusses nonparametric identification and estimation of the causal effect of a treatment in the presence of confounding, competing risks and random right-censoring. Our identification strategy is based on an instrumental variable. We show that the competing risks model generates a nonparametric quantile instrumental regression problem. Quantile treatment effects on the subdistribution function can be recovered from the regression function. A distinguishing feature of the model is that censoring and competing risks prevent identification at some quantiles. We characterize the set of quantiles for which exact identification is possible and give partial identification results for other quantiles. We outline an estimation procedure and discuss its properties. The finite sample performance of the estimator is evaluated through simulations. We apply the proposed method to the Health Insurance Plan of Greater New York experiment.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-023-09599-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/9 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper discusses nonparametric identification and estimation of the causal effect of a treatment in the presence of confounding, competing risks and random right-censoring. Our identification strategy is based on an instrumental variable. We show that the competing risks model generates a nonparametric quantile instrumental regression problem. Quantile treatment effects on the subdistribution function can be recovered from the regression function. A distinguishing feature of the model is that censoring and competing risks prevent identification at some quantiles. We characterize the set of quantiles for which exact identification is possible and give partial identification results for other quantiles. We outline an estimation procedure and discuss its properties. The finite sample performance of the estimator is evaluated through simulations. We apply the proposed method to the Health Insurance Plan of Greater New York experiment.

Abstract Image

竞争风险模型中混淆的非参数工具方法。
本文讨论了在存在混杂、竞争风险和随机权利审查的情况下,治疗因果效应的非参数识别和估计。我们的识别策略基于一个工具变量。我们证明了竞争风险模型产生了一个非参数分位数工具回归问题。可以从回归函数中恢复对次分布函数的量化处理效果。该模型的一个显著特征是,审查和竞争风险阻止了某些分位数的识别。我们刻画了可能进行精确识别的分位数集,并给出了其他分位数的部分识别结果。我们概述了一个估计过程,并讨论了它的性质。通过仿真评估了估计器的有限样本性能。我们将所提出的方法应用于大纽约地区的健康保险计划实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lifetime Data Analysis
Lifetime Data Analysis 数学-数学跨学科应用
CiteScore
2.30
自引率
7.70%
发文量
43
审稿时长
3 months
期刊介绍: The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信