{"title":"Identification and analysis of a clinically isolated strain of Halomonas based on whole-genome sequencing and comparative genomics.","authors":"Pinjia Wang, Chengbin Xie","doi":"10.1093/labmed/lmad040","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The aim of this study was to identify the species of a Halomonas strain isolated from a neonatal blood sample and to understand the potential pathogenicity and characteristic genes of the strain.</p><p><strong>Methods: </strong>The genomic DNA of strain 18071143 (identified as Halomonas by matrix-assisted laser desorption-ionization time of flight-mass spectrometry and the 16S ribosomal RNA (rRNA) gene sequence) was sequenced using Nanopore PromethION platforms. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) were calculated using the complete genome sequences of the strain. Comparative genomic analyses were performed on strain 18071143 and 3 strains of Halomonas (Halomonas stevensii S18214, Halomonas hamiltonii KCTC 22154, and Halomonas johnsoniae KCTC 22157) that were associated with human infections and had high genomic similarity to strain 18071143.</p><p><strong>Results: </strong>Phylogenetic, ANI, and dDDH similarity analyses based on genome sequence indicated that strain 18071143 belonged to the species H stevensii. Similarities exist between strain 18071143 and the other 3 Halomonas strains in terms of gene structure and protein function. Nonetheless, strain 18071143 has greater potential for DNA replication, recombination, repair, and horizontal transfer.</p><p><strong>Conclusion: </strong>Whole-genome sequencing holds great promise for accurate strain identification in clinical microbiology. In addition, the results of this study provide data for understanding Halomonas from the perspective of pathogenic bacteria.</p>","PeriodicalId":17951,"journal":{"name":"Laboratory medicine","volume":" ","pages":"80-87"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laboratory medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/labmed/lmad040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: The aim of this study was to identify the species of a Halomonas strain isolated from a neonatal blood sample and to understand the potential pathogenicity and characteristic genes of the strain.
Methods: The genomic DNA of strain 18071143 (identified as Halomonas by matrix-assisted laser desorption-ionization time of flight-mass spectrometry and the 16S ribosomal RNA (rRNA) gene sequence) was sequenced using Nanopore PromethION platforms. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) were calculated using the complete genome sequences of the strain. Comparative genomic analyses were performed on strain 18071143 and 3 strains of Halomonas (Halomonas stevensii S18214, Halomonas hamiltonii KCTC 22154, and Halomonas johnsoniae KCTC 22157) that were associated with human infections and had high genomic similarity to strain 18071143.
Results: Phylogenetic, ANI, and dDDH similarity analyses based on genome sequence indicated that strain 18071143 belonged to the species H stevensii. Similarities exist between strain 18071143 and the other 3 Halomonas strains in terms of gene structure and protein function. Nonetheless, strain 18071143 has greater potential for DNA replication, recombination, repair, and horizontal transfer.
Conclusion: Whole-genome sequencing holds great promise for accurate strain identification in clinical microbiology. In addition, the results of this study provide data for understanding Halomonas from the perspective of pathogenic bacteria.