Fei Gu, Yiu-Fai Yung, Mike W-L Cheung, Baek-Kyoo Brian Joo, Kim Nimon
{"title":"Statistical Inference in Redundancy Analysis: A Direct Covariance Structure Modeling Approach.","authors":"Fei Gu, Yiu-Fai Yung, Mike W-L Cheung, Baek-Kyoo Brian Joo, Kim Nimon","doi":"10.1080/00273171.2022.2141675","DOIUrl":null,"url":null,"abstract":"<p><p>Redundancy analysis (RA) is a multivariate method that maximizes the mean variance of a set of criterion variables explained by a small number of redundancy variates (i.e., linear combinations of a set of predictor variables). However, two challenges exist in RA. First, inferential information for the RA estimates might not be readily available. Second, the existing methods addressing the dimensionality problem in RA are limited for various reasons. To aid the applications of RA, we propose a direct covariance structure modeling approach to RA. The proposed approach (1) provides inferential information for the RA estimates, and (2) allows the researcher to use a simple yet practical criterion to address the dimensionality problem in RA. We illustrate our approach with an artificial example, validate some standard error estimates by simulations, and demonstrate our new criterion in a real example. Finally, we conclude with future research topics.</p>","PeriodicalId":53155,"journal":{"name":"Multivariate Behavioral Research","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multivariate Behavioral Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00273171.2022.2141675","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/12/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Redundancy analysis (RA) is a multivariate method that maximizes the mean variance of a set of criterion variables explained by a small number of redundancy variates (i.e., linear combinations of a set of predictor variables). However, two challenges exist in RA. First, inferential information for the RA estimates might not be readily available. Second, the existing methods addressing the dimensionality problem in RA are limited for various reasons. To aid the applications of RA, we propose a direct covariance structure modeling approach to RA. The proposed approach (1) provides inferential information for the RA estimates, and (2) allows the researcher to use a simple yet practical criterion to address the dimensionality problem in RA. We illustrate our approach with an artificial example, validate some standard error estimates by simulations, and demonstrate our new criterion in a real example. Finally, we conclude with future research topics.
期刊介绍:
Multivariate Behavioral Research (MBR) publishes a variety of substantive, methodological, and theoretical articles in all areas of the social and behavioral sciences. Most MBR articles fall into one of two categories. Substantive articles report on applications of sophisticated multivariate research methods to study topics of substantive interest in personality, health, intelligence, industrial/organizational, and other behavioral science areas. Methodological articles present and/or evaluate new developments in multivariate methods, or address methodological issues in current research. We also encourage submission of integrative articles related to pedagogy involving multivariate research methods, and to historical treatments of interest and relevance to multivariate research methods.