Denovo RNA-Seq analysis of ovary and testis reveals potential differentially expressed transcripts associated with gonadal unsynchronization development in Onychostoma macrolepis
Heran Cao , Long Li , Zhenpeng Li , Huihui Gao , Guofan Peng , Chao Zhu , Yining Chen , Fangxia Yang , Wuzi Dong
{"title":"Denovo RNA-Seq analysis of ovary and testis reveals potential differentially expressed transcripts associated with gonadal unsynchronization development in Onychostoma macrolepis","authors":"Heran Cao , Long Li , Zhenpeng Li , Huihui Gao , Guofan Peng , Chao Zhu , Yining Chen , Fangxia Yang , Wuzi Dong","doi":"10.1016/j.gep.2022.119303","DOIUrl":null,"url":null,"abstract":"<div><p>The Onychostoma macrolepis (O. macrolepis) is a rare and endangered wild species. Their endangered extinction might be due to their low fertility. To further illustrate the molecular mechanism of gonad development of the male and female O. macrolepis, the present study carried out de novo testicular and ovarian transcriptome sequencing. By comparing ovary and testis, 30,869 differentially expressed unigenes (9870 in female, 20999 in male) were identified. In addition, KEGG and GO analysis suggested that the Hedgehog signaling pathway have important roles in testis maintenance and spermatogenesis, whereas the Hippo signaling pathway and Wnt signaling pathway are likely to participate in ovary maintenance. RT-qPCR analysis results were consistent with transcriptome sequencing that all of gender differentiation-related genes (FOXL2, GDF9, WNT4, CYP19A1, SOX9 and GATA4), temperature-enriched genes (NOVA1, CTGF and NR4A1), clock-related genes (PER2, PER3, CRY1, CRY2, BMAL1 and CIPC) were significantly differential expression in testis compared with ovaries. Taken together, these results revealed a potential molecular mechanism that low fertility of the O. macrolepis might strong correlate with the gonadal dyssynchrony development of the male and female, which might provide theoretical basis and technical support for artificial reproduction and germplasm resource protection of the O. macrolepis.</p></div>","PeriodicalId":55598,"journal":{"name":"Gene Expression Patterns","volume":"47 ","pages":"Article 119303"},"PeriodicalIF":1.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gene Expression Patterns","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567133X22000734","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The Onychostoma macrolepis (O. macrolepis) is a rare and endangered wild species. Their endangered extinction might be due to their low fertility. To further illustrate the molecular mechanism of gonad development of the male and female O. macrolepis, the present study carried out de novo testicular and ovarian transcriptome sequencing. By comparing ovary and testis, 30,869 differentially expressed unigenes (9870 in female, 20999 in male) were identified. In addition, KEGG and GO analysis suggested that the Hedgehog signaling pathway have important roles in testis maintenance and spermatogenesis, whereas the Hippo signaling pathway and Wnt signaling pathway are likely to participate in ovary maintenance. RT-qPCR analysis results were consistent with transcriptome sequencing that all of gender differentiation-related genes (FOXL2, GDF9, WNT4, CYP19A1, SOX9 and GATA4), temperature-enriched genes (NOVA1, CTGF and NR4A1), clock-related genes (PER2, PER3, CRY1, CRY2, BMAL1 and CIPC) were significantly differential expression in testis compared with ovaries. Taken together, these results revealed a potential molecular mechanism that low fertility of the O. macrolepis might strong correlate with the gonadal dyssynchrony development of the male and female, which might provide theoretical basis and technical support for artificial reproduction and germplasm resource protection of the O. macrolepis.
期刊介绍:
Gene Expression Patterns is devoted to the rapid publication of high quality studies of gene expression in development. Studies using cell culture are also suitable if clearly relevant to development, e.g., analysis of key regulatory genes or of gene sets in the maintenance or differentiation of stem cells. Key areas of interest include:
-In-situ studies such as expression patterns of important or interesting genes at all levels, including transcription and protein expression
-Temporal studies of large gene sets during development
-Transgenic studies to study cell lineage in tissue formation