Francesca Gazzani, Denise Bellisario, Laura Fazi, Alessia Balboni, Silvia Licoccia, Chiara Pavoni, Paola Cozza, Roberta Lione
{"title":"Effects of IPR by mechanical oscillating strips system on biological structures: a quantitative and qualitative evaluation.","authors":"Francesca Gazzani, Denise Bellisario, Laura Fazi, Alessia Balboni, Silvia Licoccia, Chiara Pavoni, Paola Cozza, Roberta Lione","doi":"10.1186/s40510-023-00460-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To evaluate by means of profilometric analysis and scanning electronic microscope (SEM) the effects on enamel surfaces of oscillating mechanical systems for interproximal enamel reduction (IPR). Fifteen complete (Group 1) oscillating IPR sequence and 15 single metallic strips (Group 2) for active IPR phase of 0.2 mm were selected and tested on 30 freshly extracted teeth by means of tribological tests with alternative dry-sliding motion (Linear Reciprocating Tribometer, C.S.M. Instruments, Peseaux, Switzerland). Enamel surface roughness and waviness measurements were assessed by contact probe surface profiler (TalySurf CLI 2000; Taylor Hobson, Leicester, UK) and a TayMap software for the 3D analysis. Statistical analysis was performed with independent samples t-test. Significance was established at the P < .05 level. SEM analysis of enamel surfaces was conducted with a FEI Quanta 200 (Hillsboro, USA) in high vacuum at 30.00 kV. Images were acquired at 30X, 100X, and 300X of magnification.</p><p><strong>Results: </strong>Teeth undergone Group 1 showed lower values of surface roughness (Ra - 0.34 µm, Rt - 1.55 µm) and significant increase of waviness parameters (Wa 0.25 µm, Wt 4.02 µm) when compared with those treated with Group 2. SEM evaluation showed smoothers and more regular surfaces when IPR was performed by complete IPR sequence. Single metallic strip determined more irregular surfaces characterized by extended grooves, alternated with enamel ridges and irregular fragments.</p><p><strong>Conclusion: </strong>The adoption of a standardized oscillating IPR sequence determines more regular and harmonious enamel surfaces at the end of the procedure. An adequate polishing after IPR plays a crucial role to guarantee a good long-term prognosis and a good respect of biological structures.</p>","PeriodicalId":56071,"journal":{"name":"Progress in Orthodontics","volume":"24 1","pages":"9"},"PeriodicalIF":4.8000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10008756/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Orthodontics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40510-023-00460-9","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Dentistry","Score":null,"Total":0}
引用次数: 0
Abstract
Background: To evaluate by means of profilometric analysis and scanning electronic microscope (SEM) the effects on enamel surfaces of oscillating mechanical systems for interproximal enamel reduction (IPR). Fifteen complete (Group 1) oscillating IPR sequence and 15 single metallic strips (Group 2) for active IPR phase of 0.2 mm were selected and tested on 30 freshly extracted teeth by means of tribological tests with alternative dry-sliding motion (Linear Reciprocating Tribometer, C.S.M. Instruments, Peseaux, Switzerland). Enamel surface roughness and waviness measurements were assessed by contact probe surface profiler (TalySurf CLI 2000; Taylor Hobson, Leicester, UK) and a TayMap software for the 3D analysis. Statistical analysis was performed with independent samples t-test. Significance was established at the P < .05 level. SEM analysis of enamel surfaces was conducted with a FEI Quanta 200 (Hillsboro, USA) in high vacuum at 30.00 kV. Images were acquired at 30X, 100X, and 300X of magnification.
Results: Teeth undergone Group 1 showed lower values of surface roughness (Ra - 0.34 µm, Rt - 1.55 µm) and significant increase of waviness parameters (Wa 0.25 µm, Wt 4.02 µm) when compared with those treated with Group 2. SEM evaluation showed smoothers and more regular surfaces when IPR was performed by complete IPR sequence. Single metallic strip determined more irregular surfaces characterized by extended grooves, alternated with enamel ridges and irregular fragments.
Conclusion: The adoption of a standardized oscillating IPR sequence determines more regular and harmonious enamel surfaces at the end of the procedure. An adequate polishing after IPR plays a crucial role to guarantee a good long-term prognosis and a good respect of biological structures.
期刊介绍:
Progress in Orthodontics is a fully open access, international journal owned by the Italian Society of Orthodontics and published under the brand SpringerOpen. The Society is currently covering all publication costs so there are no article processing charges for authors.
It is a premier journal of international scope that fosters orthodontic research, including both basic research and development of innovative clinical techniques, with an emphasis on the following areas:
• Mechanisms to improve orthodontics
• Clinical studies and control animal studies
• Orthodontics and genetics, genomics
• Temporomandibular joint (TMJ) control clinical trials
• Efficacy of orthodontic appliances and animal models
• Systematic reviews and meta analyses
• Mechanisms to speed orthodontic treatment
Progress in Orthodontics will consider for publication only meritorious and original contributions. These may be:
• Original articles reporting the findings of clinical trials, clinically relevant basic scientific investigations, or novel therapeutic or diagnostic systems
• Review articles on current topics
• Articles on novel techniques and clinical tools
• Articles of contemporary interest