Paul Mieske, Julia Scheinpflug, Timur Alexander Yorgan, Laura Brylka, Rupert Palme, Ute Hobbiesiefken, Juliane Preikschat, Lars Lewejohann, Kai Diederich
{"title":"Effects of more natural housing conditions on the muscular and skeletal characteristics of female C57BL/6J mice.","authors":"Paul Mieske, Julia Scheinpflug, Timur Alexander Yorgan, Laura Brylka, Rupert Palme, Ute Hobbiesiefken, Juliane Preikschat, Lars Lewejohann, Kai Diederich","doi":"10.1186/s42826-023-00160-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Enrichment of home cages in laboratory experiments offers clear advantages, but has been criticized in some respects. First, there is a lack of definition, which makes methodological uniformity difficult. Second, there is concern that the enrichment of home cages may increase the variance of results in experiments. Here, the influence of more natural housing conditions on physiological parameters of female C57BL/6J mice was investigated from an animal welfare point of view. For this purpose, the animals were kept in three different housing conditions: conventional cage housing, enriched housing and the semi naturalistic environment. The focus was on musculoskeletal changes after long-term environmental enrichment.</p><p><strong>Results: </strong>The housing conditions had a long-term effect on the body weight of the test animals. The more complex and natural the home cage, the heavier the animals. This was associated with increased adipose deposits in the animals. There were no significant changes in muscle and bone characteristics except for single clues (femur diameter, bone resorption marker CTX-1). Additionally, the animals in the semi naturalistic environment (SNE) were found to have the fewest bone anomalies. Housing in the SNE appears to have the least effect on stress hormone concentrations. The lowest oxygen uptake was observed in enriched cage housing.</p><p><strong>Conclusions: </strong>Despite increasing values, observed body weights were in the normal and strain-typical range. Overall, musculoskeletal parameters were slightly improved and age-related effects appear to have been attenuated. The variances in the results were not increased by more natural housing. This confirms the suitability of the applied housing conditions to ensure and increase animal welfare in laboratory experiments.</p>","PeriodicalId":17993,"journal":{"name":"Laboratory Animal Research","volume":"39 1","pages":"9"},"PeriodicalIF":2.7000,"publicationDate":"2023-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10186785/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Laboratory Animal Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42826-023-00160-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Enrichment of home cages in laboratory experiments offers clear advantages, but has been criticized in some respects. First, there is a lack of definition, which makes methodological uniformity difficult. Second, there is concern that the enrichment of home cages may increase the variance of results in experiments. Here, the influence of more natural housing conditions on physiological parameters of female C57BL/6J mice was investigated from an animal welfare point of view. For this purpose, the animals were kept in three different housing conditions: conventional cage housing, enriched housing and the semi naturalistic environment. The focus was on musculoskeletal changes after long-term environmental enrichment.
Results: The housing conditions had a long-term effect on the body weight of the test animals. The more complex and natural the home cage, the heavier the animals. This was associated with increased adipose deposits in the animals. There were no significant changes in muscle and bone characteristics except for single clues (femur diameter, bone resorption marker CTX-1). Additionally, the animals in the semi naturalistic environment (SNE) were found to have the fewest bone anomalies. Housing in the SNE appears to have the least effect on stress hormone concentrations. The lowest oxygen uptake was observed in enriched cage housing.
Conclusions: Despite increasing values, observed body weights were in the normal and strain-typical range. Overall, musculoskeletal parameters were slightly improved and age-related effects appear to have been attenuated. The variances in the results were not increased by more natural housing. This confirms the suitability of the applied housing conditions to ensure and increase animal welfare in laboratory experiments.