Stephanie P. Gill, William J. Snelling, James S. G. Dooley, Nigel G. Ternan, Ibrahim M. Banat, Joerg Arnscheidt, William R. Hunter
{"title":"Biological and synthetic surfactant exposure increases antimicrobial gene occurrence in a freshwater mixed microbial biofilm environment","authors":"Stephanie P. Gill, William J. Snelling, James S. G. Dooley, Nigel G. Ternan, Ibrahim M. Banat, Joerg Arnscheidt, William R. Hunter","doi":"10.1002/mbo3.1351","DOIUrl":null,"url":null,"abstract":"<p>Aquatic habitats are particularly susceptible to chemical pollution, such as antimicrobials, from domestic, agricultural, and industrial sources. This has led to the rapid increase of antimicrobial resistance (AMR) gene prevalence. Alternate approaches to counteract pathogenic bacteria are in development including synthetic and biological surfactants such as sodium dodecyl sulfate (SDS) and rhamnolipids. In the aquatic environment, these surfactants may be present as pollutants with the potential to affect biofilm formation and AMR gene occurrence. We tested the effects of rhamnolipid and SDS on aquatic biofilms in a freshwater stream in Northern Ireland. We grew biofilms on contaminant exposure substrates deployed within the stream over 4 weeks. We then extracted DNA and carried out shotgun sequencing using a MinION portable sequencer to determine microbial community composition, with 16S rRNA analyses (64,678 classifiable reads identified), and AMR gene occurrence (81 instances of AMR genes over 9 AMR gene classes) through a metagenomic analysis. There were no significant changes in community composition within all systems; however, biofilm exposed to rhamnolipid had a greater number of unique taxa as compared to SDS treatments and controls. AMR gene prevalence was higher in surfactant-treated biofilms, although not significant, with biofilm exposed to rhamnolipids having the highest presence of AMR genes and classes compared to the control or SDS treatments. Our results suggest that the presence of rhamnolipid encourages an increase in the prevalence of AMR genes in biofilms produced in mixed-use water bodies.</p>","PeriodicalId":18573,"journal":{"name":"MicrobiologyOpen","volume":"12 2","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2023-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mbo3.1351","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MicrobiologyOpen","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mbo3.1351","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aquatic habitats are particularly susceptible to chemical pollution, such as antimicrobials, from domestic, agricultural, and industrial sources. This has led to the rapid increase of antimicrobial resistance (AMR) gene prevalence. Alternate approaches to counteract pathogenic bacteria are in development including synthetic and biological surfactants such as sodium dodecyl sulfate (SDS) and rhamnolipids. In the aquatic environment, these surfactants may be present as pollutants with the potential to affect biofilm formation and AMR gene occurrence. We tested the effects of rhamnolipid and SDS on aquatic biofilms in a freshwater stream in Northern Ireland. We grew biofilms on contaminant exposure substrates deployed within the stream over 4 weeks. We then extracted DNA and carried out shotgun sequencing using a MinION portable sequencer to determine microbial community composition, with 16S rRNA analyses (64,678 classifiable reads identified), and AMR gene occurrence (81 instances of AMR genes over 9 AMR gene classes) through a metagenomic analysis. There were no significant changes in community composition within all systems; however, biofilm exposed to rhamnolipid had a greater number of unique taxa as compared to SDS treatments and controls. AMR gene prevalence was higher in surfactant-treated biofilms, although not significant, with biofilm exposed to rhamnolipids having the highest presence of AMR genes and classes compared to the control or SDS treatments. Our results suggest that the presence of rhamnolipid encourages an increase in the prevalence of AMR genes in biofilms produced in mixed-use water bodies.
期刊介绍:
MicrobiologyOpen is a peer reviewed, fully open access, broad-scope, and interdisciplinary journal delivering rapid decisions and fast publication of microbial science, a field which is undergoing a profound and exciting evolution in this post-genomic era.
The journal aims to serve the research community by providing a vehicle for authors wishing to publish quality research in both fundamental and applied microbiology. Our goal is to publish articles that stimulate discussion and debate, as well as add to our knowledge base and further the understanding of microbial interactions and microbial processes.
MicrobiologyOpen gives prompt and equal consideration to articles reporting theoretical, experimental, applied, and descriptive work in all aspects of bacteriology, virology, mycology and protistology, including, but not limited to:
- agriculture
- antimicrobial resistance
- astrobiology
- biochemistry
- biotechnology
- cell and molecular biology
- clinical microbiology
- computational, systems, and synthetic microbiology
- environmental science
- evolutionary biology, ecology, and systematics
- food science and technology
- genetics and genomics
- geobiology and earth science
- host-microbe interactions
- infectious diseases
- natural products discovery
- pharmaceutical and medicinal chemistry
- physiology
- plant pathology
- veterinary microbiology
We will consider submissions across unicellular and cell-cluster organisms: prokaryotes (bacteria, archaea) and eukaryotes (fungi, protists, microalgae, lichens), as well as viruses and prions infecting or interacting with microorganisms, plants and animals, including genetic, biochemical, biophysical, bioinformatic and structural analyses.
The journal features Original Articles (including full Research articles, Method articles, and Short Communications), Commentaries, Reviews, and Editorials. Original papers must report well-conducted research with conclusions supported by the data presented in the article. We also support confirmatory research and aim to work with authors to meet reviewer expectations.
MicrobiologyOpen publishes articles submitted directly to the journal and those referred from other Wiley journals.