Exploring the predictive validity of personality disorder criteria.

Steffen Müller, Christopher J Hopwood, Andrew E Skodol, Leslie C Morey, Thomas F Oltmanns, Cord Benecke, Johannes Zimmermann
{"title":"Exploring the predictive validity of personality disorder criteria.","authors":"Steffen Müller,&nbsp;Christopher J Hopwood,&nbsp;Andrew E Skodol,&nbsp;Leslie C Morey,&nbsp;Thomas F Oltmanns,&nbsp;Cord Benecke,&nbsp;Johannes Zimmermann","doi":"10.1037/per0000609","DOIUrl":null,"url":null,"abstract":"<p><p>We tested the predictive validity of personality disorder (PD) indicators at different levels of aggregation, ranging from general PD severity to PD syndrome scales to individual PD criteria. We compared the predictive validity of models on these levels based on interview data on all 78 DSM-IV PD criteria, by using 19 outcome scales in three different samples (<i>N</i> = 651, <i>N</i> = 552, and <i>N</i> = 1,277). We hypothesized that criteria of personality pathology yield a significant increase in predictive validity compared with scales that are aggregated at the syndrome- or general severity-level. We assessed out of sample performance of predictive models in a repeated cross-validation design using regularized linear regression and regression forest algorithms. We observed no significant difference in predictive performance between models trained at the item-level and models trained on scale-level data. We further tested the predictive performance of the trained linear models across samples on outcome measures shared between samples and inspected models for criteria-level information they relied on to make predictions. Our results suggest that little predictive variance is lost when interview items assessing DSM-IV PD criteria are aggregated to dimensional PD scales. (PsycInfo Database Record (c) 2023 APA, all rights reserved).</p>","PeriodicalId":74420,"journal":{"name":"Personality disorders","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Personality disorders","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1037/per0000609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We tested the predictive validity of personality disorder (PD) indicators at different levels of aggregation, ranging from general PD severity to PD syndrome scales to individual PD criteria. We compared the predictive validity of models on these levels based on interview data on all 78 DSM-IV PD criteria, by using 19 outcome scales in three different samples (N = 651, N = 552, and N = 1,277). We hypothesized that criteria of personality pathology yield a significant increase in predictive validity compared with scales that are aggregated at the syndrome- or general severity-level. We assessed out of sample performance of predictive models in a repeated cross-validation design using regularized linear regression and regression forest algorithms. We observed no significant difference in predictive performance between models trained at the item-level and models trained on scale-level data. We further tested the predictive performance of the trained linear models across samples on outcome measures shared between samples and inspected models for criteria-level information they relied on to make predictions. Our results suggest that little predictive variance is lost when interview items assessing DSM-IV PD criteria are aggregated to dimensional PD scales. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

探讨人格障碍标准的预测效度。
我们在不同的聚合水平上测试了人格障碍(PD)指标的预测有效性,从一般PD严重程度到PD综合征量表到个体PD标准。我们在三个不同样本(N = 651, N = 552和N = 1277)中使用19个结果量表,基于所有78个DSM-IV PD标准的访谈数据,比较了模型在这些水平上的预测有效性。我们假设人格病理学的标准在预测效度上比在综合症或一般严重程度上聚合的量表有显著的提高。我们使用正则化线性回归和回归森林算法在重复交叉验证设计中评估了预测模型的样本外性能。我们观察到在项目水平上训练的模型和在规模水平数据上训练的模型在预测性能上没有显著差异。我们进一步测试了经过训练的线性模型在样本之间共享的结果度量上的预测性能,并检查了模型所依赖的标准水平信息来进行预测。我们的研究结果表明,当评估DSM-IV PD标准的访谈项目汇总到PD维度量表时,预测差异很小。(PsycInfo数据库记录(c) 2023 APA,版权所有)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信