Adaptive Semi-Supervised Intent Inferral to Control a Powered Hand Orthosis for Stroke.

Jingxi Xu, Cassie Meeker, Ava Chen, Lauren Winterbottom, Michaela Fraser, Sangwoo Park, Lynne M Weber, Mitchell Miya, Dawn Nilsen, Joel Stein, Matei Ciocarlie
{"title":"Adaptive Semi-Supervised Intent Inferral to Control a Powered Hand Orthosis for Stroke.","authors":"Jingxi Xu, Cassie Meeker, Ava Chen, Lauren Winterbottom, Michaela Fraser, Sangwoo Park, Lynne M Weber, Mitchell Miya, Dawn Nilsen, Joel Stein, Matei Ciocarlie","doi":"10.1109/icra46639.2022.9811932","DOIUrl":null,"url":null,"abstract":"<p><p>In order to provide therapy in a functional context, controls for wearable robotic orthoses need to be robust and intuitive. We have previously introduced an intuitive, user-driven, EMG-based method to operate a robotic hand orthosis, but the process of training a control that is robust to concept drift (changes in the input signal) places a substantial burden on the user. In this paper, we explore semi-supervised learning as a paradigm for controlling a powered hand orthosis for stroke subjects. To the best of our knowledge, this is the first use of semi-supervised learning for an orthotic application. Specifically, we propose a disagreement-based semi-supervision algorithm for handling intrasession concept drift based on multimodal ipsilateral sensing. We evaluate the performance of our algorithm on data collected from five stroke subjects. Our results show that the proposed algorithm helps the device adapt to intrasession drift using unlabeled data and reduces the training burden placed on the user. We also validate the feasibility of our proposed algorithm with a functional task; in these experiments, two subjects successfully completed multiple instances of a pick-and-handover task.</p>","PeriodicalId":73286,"journal":{"name":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","volume":"2022 ","pages":"8097-8103"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10181849/pdf/nihms-1847263.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Robotics and Automation : ICRA : [proceedings]. IEEE International Conference on Robotics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icra46639.2022.9811932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/12 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In order to provide therapy in a functional context, controls for wearable robotic orthoses need to be robust and intuitive. We have previously introduced an intuitive, user-driven, EMG-based method to operate a robotic hand orthosis, but the process of training a control that is robust to concept drift (changes in the input signal) places a substantial burden on the user. In this paper, we explore semi-supervised learning as a paradigm for controlling a powered hand orthosis for stroke subjects. To the best of our knowledge, this is the first use of semi-supervised learning for an orthotic application. Specifically, we propose a disagreement-based semi-supervision algorithm for handling intrasession concept drift based on multimodal ipsilateral sensing. We evaluate the performance of our algorithm on data collected from five stroke subjects. Our results show that the proposed algorithm helps the device adapt to intrasession drift using unlabeled data and reduces the training burden placed on the user. We also validate the feasibility of our proposed algorithm with a functional task; in these experiments, two subjects successfully completed multiple instances of a pick-and-handover task.

Abstract Image

Abstract Image

自适应半监督意向推理控制用于中风的电动手部矫形器
为了在功能性环境中提供治疗,可穿戴机器人矫形器的控制必须稳健、直观。我们以前曾介绍过一种直观的、由用户驱动的、基于肌电图的方法来操作机器人手部矫形器,但训练一个对概念漂移(输入信号的变化)具有鲁棒性的控制器的过程给用户带来了很大的负担。在本文中,我们探索了一种半监督学习模式,用于控制中风患者的动力手部矫形器。据我们所知,这是首次将半监督学习用于矫形器应用。具体来说,我们提出了一种基于分歧的半监督算法,用于处理基于多模态同侧传感的会话内概念漂移。我们在从五名中风受试者收集的数据上评估了算法的性能。我们的结果表明,所提出的算法可以帮助设备使用无标记数据适应会话内漂移,并减轻用户的训练负担。我们还通过一项功能任务验证了我们提出的算法的可行性;在这些实验中,两名受试者成功完成了多次拾取和移交任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信