Haoran Zhang, Zachary A Steelman, Silvia Ceballos, Kengyeh K Chu, Adam Wax
{"title":"Reconstruction of angle-resolved backscattering through a multimode fiber for cell nuclei and particle size determination.","authors":"Haoran Zhang, Zachary A Steelman, Silvia Ceballos, Kengyeh K Chu, Adam Wax","doi":"10.1063/5.0011500","DOIUrl":null,"url":null,"abstract":"<p><p>We demonstrate reconstruction of angle-resolved optical backscattering after transmission through a multimode fiber. Angle-resolved backscattering is an important tool for particle sizing, and has been developed as a diagnostic modality for detecting epithelial precancer. In this work, we fully characterized the transfer function of a multimode fiber using a plane-wave illumination basis across two dimensions. Once characterized, angle-resolved scattering information which has been scrambled by multimodal propagation can be easily and accurately reconstructed. Our technique was validated using a Mie theory-based inverse light scattering analysis (ILSA) algorithm on polystyrene microsphere phantoms of known sizes. To demonstrate the clinical potential of this approach, nuclear morphology was determined from the reconstructed angular backscattering from MCF-10A human mammary epithelial cell samples and validated against quantitative image analysis (QIA) of fluorescence microscopy images.</p>","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"5 7","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1063/5.0011500","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0011500","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 1
Abstract
We demonstrate reconstruction of angle-resolved optical backscattering after transmission through a multimode fiber. Angle-resolved backscattering is an important tool for particle sizing, and has been developed as a diagnostic modality for detecting epithelial precancer. In this work, we fully characterized the transfer function of a multimode fiber using a plane-wave illumination basis across two dimensions. Once characterized, angle-resolved scattering information which has been scrambled by multimodal propagation can be easily and accurately reconstructed. Our technique was validated using a Mie theory-based inverse light scattering analysis (ILSA) algorithm on polystyrene microsphere phantoms of known sizes. To demonstrate the clinical potential of this approach, nuclear morphology was determined from the reconstructed angular backscattering from MCF-10A human mammary epithelial cell samples and validated against quantitative image analysis (QIA) of fluorescence microscopy images.
APL PhotonicsPhysics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍:
APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.