{"title":"gtfs2net: Extraction of General Transit Feed Specification Data Sets to Abstract Networks and Their Analysis.","authors":"Gergely Kocsis, Imre Varga","doi":"10.1089/big.2022.0269","DOIUrl":null,"url":null,"abstract":"<p><p>Mass transportation networks of cities or regions are interesting and important to be studied to get a picture of the properties of a somehow better topology and system of transportation. One way to do this lies on the basis of spatial information of stations and routes. As we show however interesting findings can be gained also if one studies the abstract network topologies of these systems. To get these abstract types of networks, we have developed a tool that can extract a network of connected stops from General Transit Feed Specification feeds. As we found during the development, service providers do not follow the specification in coherent ways, so as a kind of postprocessing we have introduced virtual stations to the abstract networks that gather close stops together. We analyze the effect of these new stations on the abstract map as well.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":"30-41"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2022.0269","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Mass transportation networks of cities or regions are interesting and important to be studied to get a picture of the properties of a somehow better topology and system of transportation. One way to do this lies on the basis of spatial information of stations and routes. As we show however interesting findings can be gained also if one studies the abstract network topologies of these systems. To get these abstract types of networks, we have developed a tool that can extract a network of connected stops from General Transit Feed Specification feeds. As we found during the development, service providers do not follow the specification in coherent ways, so as a kind of postprocessing we have introduced virtual stations to the abstract networks that gather close stops together. We analyze the effect of these new stations on the abstract map as well.
Big DataCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍:
Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions.
Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government.
Big Data coverage includes:
Big data industry standards,
New technologies being developed specifically for big data,
Data acquisition, cleaning, distribution, and best practices,
Data protection, privacy, and policy,
Business interests from research to product,
The changing role of business intelligence,
Visualization and design principles of big data infrastructures,
Physical interfaces and robotics,
Social networking advantages for Facebook, Twitter, Amazon, Google, etc,
Opportunities around big data and how companies can harness it to their advantage.