Simulation of Complex Biomolecular Systems: The Ribosome Challenge.

IF 10.4 1区 生物学 Q1 BIOPHYSICS
Lars V Bock, Sara Gabrielli, Michal H Kolář, Helmut Grubmüller
{"title":"Simulation of Complex Biomolecular Systems: The Ribosome Challenge.","authors":"Lars V Bock,&nbsp;Sara Gabrielli,&nbsp;Michal H Kolář,&nbsp;Helmut Grubmüller","doi":"10.1146/annurev-biophys-111622-091147","DOIUrl":null,"url":null,"abstract":"<p><p>Large biomolecular systems are at the heart of many essential cellular processes. The dynamics and energetics of an increasing number of these systems are being studied by computer simulations. Pushing the limits of length- and timescales that can be accessed by current hard- and software has expanded the ability to describe biomolecules at different levels of detail. We focus in this review on the ribosome, which exemplifies the close interplay between experiment and various simulation approaches, as a particularly challenging and prototypic nanomachine that is pivotal to cellular biology due to its central role in translation. We sketch widely used simulation methods and demonstrate how the combination of simulations and experiments advances our understanding of the function of the translation apparatus based on fundamental physics.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":"52 ","pages":"361-390"},"PeriodicalIF":10.4000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-biophys-111622-091147","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 2

Abstract

Large biomolecular systems are at the heart of many essential cellular processes. The dynamics and energetics of an increasing number of these systems are being studied by computer simulations. Pushing the limits of length- and timescales that can be accessed by current hard- and software has expanded the ability to describe biomolecules at different levels of detail. We focus in this review on the ribosome, which exemplifies the close interplay between experiment and various simulation approaches, as a particularly challenging and prototypic nanomachine that is pivotal to cellular biology due to its central role in translation. We sketch widely used simulation methods and demonstrate how the combination of simulations and experiments advances our understanding of the function of the translation apparatus based on fundamental physics.

复杂生物分子系统的模拟:核糖体挑战。
大型生物分子系统是许多基本细胞过程的核心。越来越多的这些系统的动力学和能量学正在通过计算机模拟进行研究。突破现有的硬件和软件可以访问的长度和时间尺度的限制,扩展了在不同细节水平上描述生物分子的能力。我们在这篇综述中关注核糖体,它体现了实验和各种模拟方法之间的密切相互作用,作为一种特别具有挑战性和原型的纳米机器,由于其在翻译中的核心作用,它对细胞生物学至关重要。我们概述了广泛使用的模拟方法,并展示了模拟和实验的结合如何促进我们对基于基础物理的翻译装置功能的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual Review of Biophysics
Annual Review of Biophysics 生物-生物物理
CiteScore
21.00
自引率
0.00%
发文量
25
期刊介绍: The Annual Review of Biophysics, in publication since 1972, covers significant developments in the field of biophysics, including macromolecular structure, function and dynamics, theoretical and computational biophysics, molecular biophysics of the cell, physical systems biology, membrane biophysics, biotechnology, nanotechnology, and emerging techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信