Graphene and Two-Dimensional Materials for Biomolecule Sensing.

IF 10.4 1区 生物学 Q1 BIOPHYSICS
Deependra Kumar Ban, Prabhakar R Bandaru
{"title":"Graphene and Two-Dimensional Materials for Biomolecule Sensing.","authors":"Deependra Kumar Ban,&nbsp;Prabhakar R Bandaru","doi":"10.1146/annurev-biophys-111622-091121","DOIUrl":null,"url":null,"abstract":"<p><p>An ideal biosensor material at room temperature, with an extremely large surface area per unit mass combined with the possibility of harnessing quantum mechanical attributes, would be comprised of graphene and other two-dimensional (2D) materials. The sensing of a variety of sizes and types of biomolecules involves modulation of the electrical charge density of (current through) the 2D material and manifests through specific components of the capacitance (resistance). While sensitive detection at the single-molecule level, i.e., at zeptomolar concentrations, may be achieved, specificity in a complex mixture is more demanding. Attention should be paid to the influence of inevitably present defects in the 2D materials on the sensing, as well as calibration of obtained results with acceptable standards. The consequent establishment of a roadmap for the widespread deployment of 2D material-based biosensors in point-of-care platforms has the potential to revolutionize health care.</p>","PeriodicalId":50756,"journal":{"name":"Annual Review of Biophysics","volume":"52 ","pages":"487-507"},"PeriodicalIF":10.4000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-biophys-111622-091121","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 2

Abstract

An ideal biosensor material at room temperature, with an extremely large surface area per unit mass combined with the possibility of harnessing quantum mechanical attributes, would be comprised of graphene and other two-dimensional (2D) materials. The sensing of a variety of sizes and types of biomolecules involves modulation of the electrical charge density of (current through) the 2D material and manifests through specific components of the capacitance (resistance). While sensitive detection at the single-molecule level, i.e., at zeptomolar concentrations, may be achieved, specificity in a complex mixture is more demanding. Attention should be paid to the influence of inevitably present defects in the 2D materials on the sensing, as well as calibration of obtained results with acceptable standards. The consequent establishment of a roadmap for the widespread deployment of 2D material-based biosensors in point-of-care platforms has the potential to revolutionize health care.

用于生物分子传感的石墨烯和二维材料。
在室温下,理想的生物传感器材料将由石墨烯和其他二维(2D)材料组成,这种材料每单位质量具有极大的表面积,并且可以利用量子力学属性。对各种尺寸和类型的生物分子的传感涉及到二维材料(电流通过)的电荷密度的调制,并通过电容(电阻)的特定成分表现出来。虽然在单分子水平上,即在zeptomolar浓度下,可以实现灵敏的检测,但在复杂混合物中的特异性要求更高。应注意二维材料中不可避免地存在的缺陷对传感的影响,以及用可接受的标准校准获得的结果。由此建立的在医疗点平台广泛部署二维材料生物传感器的路线图有可能彻底改变医疗保健。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual Review of Biophysics
Annual Review of Biophysics 生物-生物物理
CiteScore
21.00
自引率
0.00%
发文量
25
期刊介绍: The Annual Review of Biophysics, in publication since 1972, covers significant developments in the field of biophysics, including macromolecular structure, function and dynamics, theoretical and computational biophysics, molecular biophysics of the cell, physical systems biology, membrane biophysics, biotechnology, nanotechnology, and emerging techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信