{"title":"Investment Recommender System Model Based on the Potential Investors' Key Decision Factors.","authors":"Asefeh Asemi, Adeleh Asemi, Andrea Ko","doi":"10.1089/big.2022.0302","DOIUrl":null,"url":null,"abstract":"<p><p>In this research, we propose an automatic recommender system for providing investment-type suggestions offered to investors. This system is based on a new intelligent approach using an adaptive neuro-fuzzy inference system (ANFIS) that works with four potential investors' key decision factors (KDFs), which are system value, environmental awareness factors, the expectation of high return, and expectation of low return. The proposed system provides a new model for investment recommender systems (IRSs), which is based on the data of KDFs, and the data related to the type of investment. The solution of fuzzy neural inference and choosing the type of investment is used to provide advice and support the investor's decision. This system also works with incomplete data. It is also possible to apply expert opinions based on feedback provided by investors who use the system. The proposed system is a reliable system for providing suggestions for the type of investment. It can predict the investors' investment decisions based on their KDFs in the selection of different investment types. This system uses the K-means technique in JMP for preprocessing the data and ANFIS for evaluating the data. We also compare the proposed system with other existing IRSs and evaluate the system's accuracy and effectiveness using the root mean squared error method. Overall, the proposed system is an effective and reliable IRS that can be used by potential investors to make better investment decisions.</p>","PeriodicalId":51314,"journal":{"name":"Big Data","volume":" ","pages":"197-218"},"PeriodicalIF":2.6000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/big.2022.0302","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/5/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this research, we propose an automatic recommender system for providing investment-type suggestions offered to investors. This system is based on a new intelligent approach using an adaptive neuro-fuzzy inference system (ANFIS) that works with four potential investors' key decision factors (KDFs), which are system value, environmental awareness factors, the expectation of high return, and expectation of low return. The proposed system provides a new model for investment recommender systems (IRSs), which is based on the data of KDFs, and the data related to the type of investment. The solution of fuzzy neural inference and choosing the type of investment is used to provide advice and support the investor's decision. This system also works with incomplete data. It is also possible to apply expert opinions based on feedback provided by investors who use the system. The proposed system is a reliable system for providing suggestions for the type of investment. It can predict the investors' investment decisions based on their KDFs in the selection of different investment types. This system uses the K-means technique in JMP for preprocessing the data and ANFIS for evaluating the data. We also compare the proposed system with other existing IRSs and evaluate the system's accuracy and effectiveness using the root mean squared error method. Overall, the proposed system is an effective and reliable IRS that can be used by potential investors to make better investment decisions.
Big DataCOMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
9.10
自引率
2.20%
发文量
60
期刊介绍:
Big Data is the leading peer-reviewed journal covering the challenges and opportunities in collecting, analyzing, and disseminating vast amounts of data. The Journal addresses questions surrounding this powerful and growing field of data science and facilitates the efforts of researchers, business managers, analysts, developers, data scientists, physicists, statisticians, infrastructure developers, academics, and policymakers to improve operations, profitability, and communications within their businesses and institutions.
Spanning a broad array of disciplines focusing on novel big data technologies, policies, and innovations, the Journal brings together the community to address current challenges and enforce effective efforts to organize, store, disseminate, protect, manipulate, and, most importantly, find the most effective strategies to make this incredible amount of information work to benefit society, industry, academia, and government.
Big Data coverage includes:
Big data industry standards,
New technologies being developed specifically for big data,
Data acquisition, cleaning, distribution, and best practices,
Data protection, privacy, and policy,
Business interests from research to product,
The changing role of business intelligence,
Visualization and design principles of big data infrastructures,
Physical interfaces and robotics,
Social networking advantages for Facebook, Twitter, Amazon, Google, etc,
Opportunities around big data and how companies can harness it to their advantage.