Lijie Wang, Jinling Zhang, Jingtao Wang, Hao Xue, Lin Deng, Fengyuan Che, Xueyuan Heng, Xuejun Zheng, Zilong Lu, Liuqing Yang, Qihua Tan, Yeping Xu, Yanchun Zhang, Xiaokang Ji, Gang Li, Fan Yang, Fuzhong Xue
{"title":"Postoperative prognostic nomogram for adult grade II/III astrocytoma in the Chinese Han population.","authors":"Lijie Wang, Jinling Zhang, Jingtao Wang, Hao Xue, Lin Deng, Fengyuan Che, Xueyuan Heng, Xuejun Zheng, Zilong Lu, Liuqing Yang, Qihua Tan, Yeping Xu, Yanchun Zhang, Xiaokang Ji, Gang Li, Fan Yang, Fuzhong Xue","doi":"10.1007/s13755-023-00223-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Prognostic models of glioma have been the focus of many studies. However, most of them are based on Western populations. Additionally, because of the complexity of healthcare data in China, it is important to select a suitable model based on existing clinical data. This study aimed to develop and independently validate a nomogram for predicting the overall survival (OS) with newly diagnosed grade II/III astrocytoma after surgery.</p><p><strong>Methods: </strong>Data of 472 patients with astrocytoma (grades II-III) were collected from Qilu Hospital as training cohort while data of 250 participants from Linyi People's Hospital were collected as validation cohort. Cox proportional hazards model was used to construct the nomogram and individually predicted 1-, 3-, and 5-year survival probabilities. Calibration ability, and discrimination ability were analyzed in both training and validation cohort.</p><p><strong>Results: </strong>Overall survival was negatively associated with histopathology, age, subtotal resection, multiple tumors, lower KPS and midline tumors. Internal validation and external validation showed good discrimination (The C-index for 1-, 3-, and 5-year survival were 0.791, 0.748, 0.733 in internal validation and 0.754, 0.735, 0.730 in external validation, respectively). The calibration curves showed good agreement between the predicted and actual 1-, 3-, and 5-year OS rates.</p><p><strong>Conclusion: </strong>This is the first nomogram study that integrates common clinicopathological factors to provide an individual probabilistic prognosis prediction for Chinese Han patients with astrocytoma (grades II-III). This model can serve as an easy-to-use tool to advise patients and establish optimized surveillance approaches after surgery.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s13755-023-00223-0.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"11 1","pages":"23"},"PeriodicalIF":4.7000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10160268/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-023-00223-0","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Prognostic models of glioma have been the focus of many studies. However, most of them are based on Western populations. Additionally, because of the complexity of healthcare data in China, it is important to select a suitable model based on existing clinical data. This study aimed to develop and independently validate a nomogram for predicting the overall survival (OS) with newly diagnosed grade II/III astrocytoma after surgery.
Methods: Data of 472 patients with astrocytoma (grades II-III) were collected from Qilu Hospital as training cohort while data of 250 participants from Linyi People's Hospital were collected as validation cohort. Cox proportional hazards model was used to construct the nomogram and individually predicted 1-, 3-, and 5-year survival probabilities. Calibration ability, and discrimination ability were analyzed in both training and validation cohort.
Results: Overall survival was negatively associated with histopathology, age, subtotal resection, multiple tumors, lower KPS and midline tumors. Internal validation and external validation showed good discrimination (The C-index for 1-, 3-, and 5-year survival were 0.791, 0.748, 0.733 in internal validation and 0.754, 0.735, 0.730 in external validation, respectively). The calibration curves showed good agreement between the predicted and actual 1-, 3-, and 5-year OS rates.
Conclusion: This is the first nomogram study that integrates common clinicopathological factors to provide an individual probabilistic prognosis prediction for Chinese Han patients with astrocytoma (grades II-III). This model can serve as an easy-to-use tool to advise patients and establish optimized surveillance approaches after surgery.
Supplementary information: The online version contains supplementary material available at 10.1007/s13755-023-00223-0.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.