Shinya Sakakibara, Shimaa A Abdellatef, Shota Yamamoto, Masao Kamimura, Jun Nakanishi
{"title":"Photoactivatable surfaces resolve the impact of gravity vector on collective cell migratory characteristics.","authors":"Shinya Sakakibara, Shimaa A Abdellatef, Shota Yamamoto, Masao Kamimura, Jun Nakanishi","doi":"10.1080/14686996.2023.2206525","DOIUrl":null,"url":null,"abstract":"<p><p>Despite considerable interest in the impact of space travel on human health, the influence of the gravity vector on collective cell migration remains unclear. This is primarily because of the difficulty in inducing collective migration, where cell clusters appear in an inverted position against gravity, without cellular damage. In this study, photoactivatable surfaces were used to overcome this challenge. Photoactivatable surfaces enable the formation of geometry-controlled cellular clusters and the remote induction of cellular migration via photoirradiation, thereby maintaining the cells in the inverted position. Substrate inversion preserved the circularity of cellular clusters compared to cells in the normal upright position, with less leader cell appearance. Furthermore, the inversion of cells against the gravity vector resulted in the remodeling of the cytoskeletal system via the strengthening of external actin bundles. Within the 3D cluster architecture, enhanced accumulation of active myosin was observed in the upper cell-cell junction, with a flattened apical surface. Depending on the gravity vector, attenuating actomyosin activity correlates with an increase in the number of leader cells, indicating the importance of cell contractility in collective migration phenotypes and cytoskeletal remodeling.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"24 1","pages":"2206525"},"PeriodicalIF":7.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/30/fa/TSTA_24_2206525.PMC10158565.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2023.2206525","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite considerable interest in the impact of space travel on human health, the influence of the gravity vector on collective cell migration remains unclear. This is primarily because of the difficulty in inducing collective migration, where cell clusters appear in an inverted position against gravity, without cellular damage. In this study, photoactivatable surfaces were used to overcome this challenge. Photoactivatable surfaces enable the formation of geometry-controlled cellular clusters and the remote induction of cellular migration via photoirradiation, thereby maintaining the cells in the inverted position. Substrate inversion preserved the circularity of cellular clusters compared to cells in the normal upright position, with less leader cell appearance. Furthermore, the inversion of cells against the gravity vector resulted in the remodeling of the cytoskeletal system via the strengthening of external actin bundles. Within the 3D cluster architecture, enhanced accumulation of active myosin was observed in the upper cell-cell junction, with a flattened apical surface. Depending on the gravity vector, attenuating actomyosin activity correlates with an increase in the number of leader cells, indicating the importance of cell contractility in collective migration phenotypes and cytoskeletal remodeling.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.