{"title":"Using mass spectrometry-based methods to understand amyloid formation and inhibition of alpha-synuclein and amyloid beta","authors":"Wesley J. Wagner, Michael L. Gross","doi":"10.1002/mas.21814","DOIUrl":null,"url":null,"abstract":"<p>Amyloid fibrils, insoluble β-sheets structures that arise from protein misfolding, are associated with several neurodegenerative disorders. Many small molecules have been investigated to prevent amyloid fibrils from forming; however, there are currently no therapeutics to combat these diseases. Mass spectrometry (MS) is proving to be effective for studying the high order structure (HOS) of aggregating proteins and for determining structural changes accompanying protein–inhibitor interactions. When combined with native MS (nMS), gas-phase ion mobility, protein footprinting, and chemical cross-linking, MS can afford regional and sometimes amino acid spatial resolution of the aggregating protein. The spatial resolution is greater than typical low-resolution spectroscopic, calorimetric, and the traditional ThT fluorescence methods used in amyloid research today. High-resolution approaches can struggle when investigating protein aggregation, as the proteins exist as complex oligomeric mixtures of many sizes and several conformations or polymorphs. Thus, MS is positioned to complement both high- and low-resolution approaches to studying amyloid fibril formation and protein–inhibitor interactions. This review covers basics in MS paired with ion mobility, continuous hydrogen-deuterium exchange (continuous HDX), pulsed hydrogen-deuterium exchange (pulsed HDX), fast photochemical oxidation of proteins (FPOP) and other irreversible labeling methods, and chemical cross-linking. We then review the applications of these approaches to studying amyloid-prone proteins with a focus on amyloid beta and alpha-synuclein. Another focus is the determination of protein–inhibitor interactions. The expectation is that MS will bring new insights to amyloid formation and thereby play an important role to prevent their formation.</p>","PeriodicalId":206,"journal":{"name":"Mass Spectrometry Reviews","volume":"43 4","pages":"782-825"},"PeriodicalIF":6.9000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mass Spectrometry Reviews","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mas.21814","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SPECTROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Amyloid fibrils, insoluble β-sheets structures that arise from protein misfolding, are associated with several neurodegenerative disorders. Many small molecules have been investigated to prevent amyloid fibrils from forming; however, there are currently no therapeutics to combat these diseases. Mass spectrometry (MS) is proving to be effective for studying the high order structure (HOS) of aggregating proteins and for determining structural changes accompanying protein–inhibitor interactions. When combined with native MS (nMS), gas-phase ion mobility, protein footprinting, and chemical cross-linking, MS can afford regional and sometimes amino acid spatial resolution of the aggregating protein. The spatial resolution is greater than typical low-resolution spectroscopic, calorimetric, and the traditional ThT fluorescence methods used in amyloid research today. High-resolution approaches can struggle when investigating protein aggregation, as the proteins exist as complex oligomeric mixtures of many sizes and several conformations or polymorphs. Thus, MS is positioned to complement both high- and low-resolution approaches to studying amyloid fibril formation and protein–inhibitor interactions. This review covers basics in MS paired with ion mobility, continuous hydrogen-deuterium exchange (continuous HDX), pulsed hydrogen-deuterium exchange (pulsed HDX), fast photochemical oxidation of proteins (FPOP) and other irreversible labeling methods, and chemical cross-linking. We then review the applications of these approaches to studying amyloid-prone proteins with a focus on amyloid beta and alpha-synuclein. Another focus is the determination of protein–inhibitor interactions. The expectation is that MS will bring new insights to amyloid formation and thereby play an important role to prevent their formation.
淀粉样纤维是蛋白质错误折叠产生的不溶性β片状结构,与多种神经退行性疾病有关。已经研究了许多小分子来防止淀粉样纤维的形成,但目前还没有治疗这些疾病的药物。事实证明,质谱法(MS)可有效研究聚集蛋白的高阶结构(HOS),并确定伴随蛋白质-抑制剂相互作用的结构变化。将质谱与原生质谱(nMS)、气相离子迁移率、蛋白质足迹和化学交联相结合,质谱可提供聚集蛋白质的区域空间分辨率,有时甚至是氨基酸空间分辨率。这种空间分辨率高于目前淀粉样蛋白研究中使用的典型低分辨率光谱法、量热法和传统的 ThT 荧光法。高分辨率方法在研究蛋白质聚集时可能会遇到困难,因为蛋白质是由多种尺寸和多种构象或多态性组成的复杂低聚物混合物。因此,质谱仪在研究淀粉样蛋白纤维的形成和蛋白质与抑制剂的相互作用时,可作为高分辨率和低分辨率方法的补充。本综述介绍了与离子迁移率、连续氢氘交换(continuous HDX)、脉冲氢氘交换(pulsed HDX)、蛋白质快速光化学氧化(FPOP)和其他不可逆标记方法以及化学交联配对的 MS 基础知识。然后,我们回顾了这些方法在淀粉样蛋白研究中的应用,重点是淀粉样β和α-突触核蛋白。另一个重点是确定蛋白质与抑制剂的相互作用。我们期望 MS 能为淀粉样蛋白的形成带来新的见解,从而在防止淀粉样蛋白形成方面发挥重要作用。
期刊介绍:
The aim of the journal Mass Spectrometry Reviews is to publish well-written reviews in selected topics in the various sub-fields of mass spectrometry as a means to summarize the research that has been performed in that area, to focus attention of other researchers, to critically review the published material, and to stimulate further research in that area.
The scope of the published reviews include, but are not limited to topics, such as theoretical treatments, instrumental design, ionization methods, analyzers, detectors, application to the qualitative and quantitative analysis of various compounds or elements, basic ion chemistry and structure studies, ion energetic studies, and studies on biomolecules, polymers, etc.