Makram Chahine, Ramin Hasani, Patrick Kao, Aaron Ray, Ryan Shubert, Mathias Lechner, Alexander Amini, Daniela Rus
{"title":"Robust flight navigation out of distribution with liquid neural networks","authors":"Makram Chahine, Ramin Hasani, Patrick Kao, Aaron Ray, Ryan Shubert, Mathias Lechner, Alexander Amini, Daniela Rus","doi":"10.1126/scirobotics.adc8892","DOIUrl":null,"url":null,"abstract":"<div >Autonomous robots can learn to perform visual navigation tasks from offline human demonstrations and generalize well to online and unseen scenarios within the same environment they have been trained on. It is challenging for these agents to take a step further and robustly generalize to new environments with drastic scenery changes that they have never encountered. Here, we present a method to create robust flight navigation agents that successfully perform vision-based fly-to-target tasks beyond their training environment under drastic distribution shifts. To this end, we designed an imitation learning framework using liquid neural networks, a brain-inspired class of continuous-time neural models that are causal and adapt to changing conditions. We observed that liquid agents learn to distill the task they are given from visual inputs and drop irrelevant features. Thus, their learned navigation skills transferred to new environments. When compared with several other state-of-the-art deep agents, experiments showed that this level of robustness in decision-making is exclusive to liquid networks, both in their differential equation and closed-form representations.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"8 77","pages":""},"PeriodicalIF":26.1000,"publicationDate":"2023-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Robotics","FirstCategoryId":"94","ListUrlMain":"https://www.science.org/doi/10.1126/scirobotics.adc8892","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 3
Abstract
Autonomous robots can learn to perform visual navigation tasks from offline human demonstrations and generalize well to online and unseen scenarios within the same environment they have been trained on. It is challenging for these agents to take a step further and robustly generalize to new environments with drastic scenery changes that they have never encountered. Here, we present a method to create robust flight navigation agents that successfully perform vision-based fly-to-target tasks beyond their training environment under drastic distribution shifts. To this end, we designed an imitation learning framework using liquid neural networks, a brain-inspired class of continuous-time neural models that are causal and adapt to changing conditions. We observed that liquid agents learn to distill the task they are given from visual inputs and drop irrelevant features. Thus, their learned navigation skills transferred to new environments. When compared with several other state-of-the-art deep agents, experiments showed that this level of robustness in decision-making is exclusive to liquid networks, both in their differential equation and closed-form representations.
期刊介绍:
Science Robotics publishes original, peer-reviewed, science- or engineering-based research articles that advance the field of robotics. The journal also features editor-commissioned Reviews. An international team of academic editors holds Science Robotics articles to the same high-quality standard that is the hallmark of the Science family of journals.
Sub-topics include: actuators, advanced materials, artificial Intelligence, autonomous vehicles, bio-inspired design, exoskeletons, fabrication, field robotics, human-robot interaction, humanoids, industrial robotics, kinematics, machine learning, material science, medical technology, motion planning and control, micro- and nano-robotics, multi-robot control, sensors, service robotics, social and ethical issues, soft robotics, and space, planetary and undersea exploration.