{"title":"Neural Architecture Search Using Covariance Matrix Adaptation Evolution Strategy.","authors":"Nilotpal Sinha, Kuan-Wen Chen","doi":"10.1162/evco_a_00331","DOIUrl":null,"url":null,"abstract":"<p><p>Evolution-based neural architecture search methods have shown promising results, but they require high computational resources because these methods involve training each candidate architecture from scratch and then evaluating its fitness, which results in long search time. Covariance Matrix Adaptation Evolution Strategy (CMA-ES) has shown promising results in tuning hyperparameters of neural networks but has not been used for neural architecture search. In this work, we propose a framework called CMANAS which applies the faster convergence property of CMA-ES to the deep neural architecture search problem. Instead of training each individual architecture seperately, we used the accuracy of a trained one shot model (OSM) on the validation data as a prediction of the fitness of the architecture, resulting in reduced search time. We also used an architecture-fitness table (AF table) for keeping a record of the already evaluated architecture, thus further reducing the search time. The architectures are modeled using a normal distribution, which is updated using CMA-ES based on the fitness of the sampled population. Experimentally, CMANAS achieves better results than previous evolution-based methods while reducing the search time significantly. The effectiveness of CMANAS is shown on two different search spaces using four datasets: CIFAR-10, CIFAR-100, ImageNet, and ImageNet16-120. All the results show that CMANAS is a viable alternative to previous evolution-based methods and extends the application of CMA-ES to the deep neural architecture search field.</p>","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1162/evco_a_00331","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Evolution-based neural architecture search methods have shown promising results, but they require high computational resources because these methods involve training each candidate architecture from scratch and then evaluating its fitness, which results in long search time. Covariance Matrix Adaptation Evolution Strategy (CMA-ES) has shown promising results in tuning hyperparameters of neural networks but has not been used for neural architecture search. In this work, we propose a framework called CMANAS which applies the faster convergence property of CMA-ES to the deep neural architecture search problem. Instead of training each individual architecture seperately, we used the accuracy of a trained one shot model (OSM) on the validation data as a prediction of the fitness of the architecture, resulting in reduced search time. We also used an architecture-fitness table (AF table) for keeping a record of the already evaluated architecture, thus further reducing the search time. The architectures are modeled using a normal distribution, which is updated using CMA-ES based on the fitness of the sampled population. Experimentally, CMANAS achieves better results than previous evolution-based methods while reducing the search time significantly. The effectiveness of CMANAS is shown on two different search spaces using four datasets: CIFAR-10, CIFAR-100, ImageNet, and ImageNet16-120. All the results show that CMANAS is a viable alternative to previous evolution-based methods and extends the application of CMA-ES to the deep neural architecture search field.
期刊介绍:
Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.