Predicting pharmaceutical inkjet printing outcomes using machine learning

IF 5.2 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Paola Carou-Senra , Jun Jie Ong , Brais Muñiz Castro , Iria Seoane-Viaño , Lucía Rodríguez-Pombo , Pedro Cabalar , Carmen Alvarez-Lorenzo , Abdul W. Basit , Gilberto Pérez , Alvaro Goyanes
{"title":"Predicting pharmaceutical inkjet printing outcomes using machine learning","authors":"Paola Carou-Senra ,&nbsp;Jun Jie Ong ,&nbsp;Brais Muñiz Castro ,&nbsp;Iria Seoane-Viaño ,&nbsp;Lucía Rodríguez-Pombo ,&nbsp;Pedro Cabalar ,&nbsp;Carmen Alvarez-Lorenzo ,&nbsp;Abdul W. Basit ,&nbsp;Gilberto Pérez ,&nbsp;Alvaro Goyanes","doi":"10.1016/j.ijpx.2023.100181","DOIUrl":null,"url":null,"abstract":"<div><p>Inkjet printing has been extensively explored in recent years to produce personalised medicines due to its low cost and versatility. Pharmaceutical applications have ranged from orodispersible films to complex polydrug implants. However, the multi-factorial nature of the inkjet printing process makes formulation (e.g., composition, surface tension, and viscosity) and printing parameter optimization (e.g., nozzle diameter, peak voltage, and drop spacing) an empirical and time-consuming endeavour. Instead, given the wealth of publicly available data on pharmaceutical inkjet printing, there is potential for a predictive model for inkjet printing outcomes to be developed. In this study, machine learning (ML) models (random forest, multilayer perceptron, and support vector machine) to predict printability and drug dose were developed using a dataset of 687 formulations, consolidated from in-house and literature-mined data on inkjet-printed formulations. The optimized ML models predicted the printability of formulations with an accuracy of 97.22%, and predicted the quality of the prints with an accuracy of 97.14%. This study demonstrates that ML models can feasibly provide predictive insights to inkjet printing outcomes prior to formulation preparation, affording resource- and time-savings.</p></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10151423/pdf/","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics: X","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590156723000257","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 3

Abstract

Inkjet printing has been extensively explored in recent years to produce personalised medicines due to its low cost and versatility. Pharmaceutical applications have ranged from orodispersible films to complex polydrug implants. However, the multi-factorial nature of the inkjet printing process makes formulation (e.g., composition, surface tension, and viscosity) and printing parameter optimization (e.g., nozzle diameter, peak voltage, and drop spacing) an empirical and time-consuming endeavour. Instead, given the wealth of publicly available data on pharmaceutical inkjet printing, there is potential for a predictive model for inkjet printing outcomes to be developed. In this study, machine learning (ML) models (random forest, multilayer perceptron, and support vector machine) to predict printability and drug dose were developed using a dataset of 687 formulations, consolidated from in-house and literature-mined data on inkjet-printed formulations. The optimized ML models predicted the printability of formulations with an accuracy of 97.22%, and predicted the quality of the prints with an accuracy of 97.14%. This study demonstrates that ML models can feasibly provide predictive insights to inkjet printing outcomes prior to formulation preparation, affording resource- and time-savings.

Abstract Image

使用机器学习预测药物喷墨打印结果
喷墨印刷由于其低成本和多功能性,近年来被广泛用于生产个性化药物。药物应用范围从口服分散膜到复杂的多药物植入物。然而,喷墨打印过程的多因素性质使得配方(例如,成分、表面张力和粘度)和打印参数优化(例如,喷嘴直径、峰值电压和液滴间距)成为一项经验和耗时的工作。相反,鉴于药物喷墨打印的丰富公开数据,有可能开发喷墨打印结果的预测模型。在这项研究中,使用687个配方的数据集开发了预测可打印性和药物剂量的机器学习(ML)模型(随机森林、多层感知器和支持向量机),这些数据集是从内部和文献挖掘的喷墨打印配方数据中整合而来的。优化后的ML模型预测配方的可打印性的准确率为97.22%,预测印刷品的质量的准确度为97.14%。本研究表明,ML模型可以在配方制备前为喷墨打印结果提供预测见解,从而节省资源和时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Pharmaceutics: X
International Journal of Pharmaceutics: X Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
6.60
自引率
0.00%
发文量
32
审稿时长
24 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信