Biaxial Tensile Prestress and Waveguide Effects on Estimates of the Complex Shear Modulus Using Optical-Based Dynamic Elastography in Plate-Like Soft Tissue Phantoms.

Marta Dore, Aime Luna, Thomas J Royston
{"title":"Biaxial Tensile Prestress and Waveguide Effects on Estimates of the Complex Shear Modulus Using Optical-Based Dynamic Elastography in Plate-Like Soft Tissue Phantoms.","authors":"Marta Dore,&nbsp;Aime Luna,&nbsp;Thomas J Royston","doi":"10.1115/1.4056103","DOIUrl":null,"url":null,"abstract":"<p><p>Dynamic elastography attempts to reconstruct quantitative maps of the viscoelastic properties of biological tissue, properties altered by disease and injury, by noninvasively measuring mechanical wave motion in the tissue. Most reconstruction strategies that have been developed neglect boundary conditions, including quasi-static tensile or compressive loading resulting in a nonzero prestress. Significant prestress is inherent to the functional role of some biological tissues, such as skeletal and cardiac muscle, arterial walls, and the cornea. In the present article a novel configuration, inspired by corneal elastography but generalizable to other applications, is studied. A polymer phantom layer is statically elongated via an in-plane biaxial normal stress while the phantom's response to transverse vibratory excitation is measured. We examine the interplay between biaxial prestress and waveguide effects in this plate-like tissue phantom. Finite static deformations caused by prestressing coupled with waveguide effects lead to results that are predicted by a novel coordinate transformation approach previously used to simplify reconstruction of anisotropic properties. Here, the approach estimates material viscoelastic properties independent of the nonzero prestress conditions without requiring advanced knowledge of those stress conditions.</p>","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9793440/pdf/JESMDT-22-1029_011006.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of engineering and science in medical diagnostics and therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4056103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Dynamic elastography attempts to reconstruct quantitative maps of the viscoelastic properties of biological tissue, properties altered by disease and injury, by noninvasively measuring mechanical wave motion in the tissue. Most reconstruction strategies that have been developed neglect boundary conditions, including quasi-static tensile or compressive loading resulting in a nonzero prestress. Significant prestress is inherent to the functional role of some biological tissues, such as skeletal and cardiac muscle, arterial walls, and the cornea. In the present article a novel configuration, inspired by corneal elastography but generalizable to other applications, is studied. A polymer phantom layer is statically elongated via an in-plane biaxial normal stress while the phantom's response to transverse vibratory excitation is measured. We examine the interplay between biaxial prestress and waveguide effects in this plate-like tissue phantom. Finite static deformations caused by prestressing coupled with waveguide effects lead to results that are predicted by a novel coordinate transformation approach previously used to simplify reconstruction of anisotropic properties. Here, the approach estimates material viscoelastic properties independent of the nonzero prestress conditions without requiring advanced knowledge of those stress conditions.

基于光学动态弹性成像的板状软组织幻影中复合剪切模量估算的双轴拉伸预应力和波导效应。
动态弹性成像试图通过无创测量组织中的机械波运动,重建生物组织粘弹性特性的定量图,这些特性因疾病和损伤而改变。大多数已经开发的重建策略忽略了边界条件,包括导致非零预应力的准静态拉伸或压缩加载。显著的预应力是固有的一些生物组织的功能作用,如骨骼肌和心肌,动脉壁和角膜。在本文中,研究了一种新的结构,灵感来自角膜弹性成像,但可推广到其他应用。通过平面内双轴法向应力静态拉伸聚合物模体层,同时测量了模体对横向振动激励的响应。我们研究了双轴预应力和波导效应之间的相互作用。预应力引起的有限静态变形与波导效应耦合导致的结果由一种新的坐标变换方法预测,该方法先前用于简化各向异性特性的重建。在这里,该方法估计材料的粘弹性特性独立于非零预应力条件,而不需要这些应力条件的先进知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信