3D Printed Acoustically Programmable Soft Microactuators.

IF 6.4 2区 计算机科学 Q1 ROBOTICS
Murat Kaynak, Amit Dolev, Mahmut Selman Sakar
{"title":"3D Printed Acoustically Programmable Soft Microactuators.","authors":"Murat Kaynak,&nbsp;Amit Dolev,&nbsp;Mahmut Selman Sakar","doi":"10.1089/soro.2021.0193","DOIUrl":null,"url":null,"abstract":"<p><p>The concept of creating all-mechanical soft microrobotic systems has great potential to address outstanding challenges in biomedical applications, and introduce more sustainable and multifunctional products. To this end, magnetic fields and light have been extensively studied as potential energy sources. On the other hand, coupling the response of materials to pressure waves has been overlooked despite the abundant use of acoustics in nature and engineering solutions. In this study, we show that programmed commands can be contained on 3D nanoprinted polymer systems with the introduction of selectively excited air bubbles and rationally designed compliant mechanisms. A repertoire of micromechanical systems is engineered using experimentally validated computational models that consider the effects of primary and secondary pressure fields on entrapped air bubbles and the surrounding fluid. Coupling the dynamics of bubble oscillators reveals rich acoustofluidic interactions that can be programmed in space and time. We prescribe kinematics by harnessing the forces generated through these interactions to deform structural elements, which can be remotely reconfigured on demand with the incorporation of mechanical switches. These basic actuation and analog control modules will serve as the building blocks for the development of a novel class of micromechanical systems powered and programmed by acoustic signals.</p>","PeriodicalId":48685,"journal":{"name":"Soft Robotics","volume":"10 2","pages":"246-257"},"PeriodicalIF":6.4000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/d5/a4/soro.2021.0193.PMC10123809.pdf","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1089/soro.2021.0193","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 4

Abstract

The concept of creating all-mechanical soft microrobotic systems has great potential to address outstanding challenges in biomedical applications, and introduce more sustainable and multifunctional products. To this end, magnetic fields and light have been extensively studied as potential energy sources. On the other hand, coupling the response of materials to pressure waves has been overlooked despite the abundant use of acoustics in nature and engineering solutions. In this study, we show that programmed commands can be contained on 3D nanoprinted polymer systems with the introduction of selectively excited air bubbles and rationally designed compliant mechanisms. A repertoire of micromechanical systems is engineered using experimentally validated computational models that consider the effects of primary and secondary pressure fields on entrapped air bubbles and the surrounding fluid. Coupling the dynamics of bubble oscillators reveals rich acoustofluidic interactions that can be programmed in space and time. We prescribe kinematics by harnessing the forces generated through these interactions to deform structural elements, which can be remotely reconfigured on demand with the incorporation of mechanical switches. These basic actuation and analog control modules will serve as the building blocks for the development of a novel class of micromechanical systems powered and programmed by acoustic signals.

Abstract Image

Abstract Image

Abstract Image

3D打印声学可编程软微致动器。
创建全机械软微型机器人系统的概念具有巨大的潜力,可以解决生物医学应用中的突出挑战,并引入更多可持续和多功能的产品。为此,磁场和光作为潜在的能源被广泛研究。另一方面,尽管声学在自然界和工程解决方案中得到了广泛的应用,但材料对压力波的耦合响应却被忽视了。在这项研究中,我们证明了编程命令可以包含在3D纳米打印聚合物系统中,通过引入选择性激发的气泡和合理设计的柔性机构。利用实验验证的计算模型设计了一系列微机械系统,这些模型考虑了主压力场和二次压力场对被困气泡和周围流体的影响。气泡振子的耦合动力学揭示了丰富的声流相互作用,可以在空间和时间上编程。我们通过利用通过这些相互作用产生的力来变形结构元件来规定运动学,这些结构元件可以根据需要通过结合机械开关远程重新配置。这些基本的驱动和模拟控制模块将作为一种新型的由声信号驱动和编程的微机械系统开发的基石。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soft Robotics
Soft Robotics ROBOTICS-
CiteScore
15.50
自引率
5.10%
发文量
128
期刊介绍: Soft Robotics (SoRo) stands as a premier robotics journal, showcasing top-tier, peer-reviewed research on the forefront of soft and deformable robotics. Encompassing flexible electronics, materials science, computer science, and biomechanics, it pioneers breakthroughs in robotic technology capable of safe interaction with living systems and navigating complex environments, natural or human-made. With a multidisciplinary approach, SoRo integrates advancements in biomedical engineering, biomechanics, mathematical modeling, biopolymer chemistry, computer science, and tissue engineering, offering comprehensive insights into constructing adaptable devices that can undergo significant changes in shape and size. This transformative technology finds critical applications in surgery, assistive healthcare devices, emergency search and rescue, space instrument repair, mine detection, and beyond.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信