Microbial degradation of low-density polyethylene by Neopestalotiopsis phangngaensis.

IF 0.8 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Sarunpron Khruengsai, Teerapong Sripahco, Patcharee Pripdeevech
{"title":"Microbial degradation of low-density polyethylene by Neopestalotiopsis phangngaensis.","authors":"Sarunpron Khruengsai,&nbsp;Teerapong Sripahco,&nbsp;Patcharee Pripdeevech","doi":"10.2323/jgam.2022.07.001","DOIUrl":null,"url":null,"abstract":"<p><p>Low-density polyethylene (LDPE) has been commercially used and accumulated as plastic solid waste. LDPE has also been found to be a non-degradable waste for decades and found as a pollution source in the environment. In this study, 65 fungi were screened for their biodegradation of LDPE. The fungi Neopestalotiopsis phangngaensis, Alternaria burnsii, Alternaria pseudoeichhorniae, and Arthrinium sacchari showed significant potential in LDPE biodegradation. These fungi were individually cultured with an LDPE sheet as a carbon source for 90 days. A maximum weight loss of the LDPE sheet was detected by the fungus N. phangngaensis (54.34%). This fungus also revealed the highest reduction rate of tensile strength of the LDPE sheet (0.33 MPa). The morphological surface of LDPE culturing with N. phangngaensis was crack, pit, and rough analyzed by scanning electron microscopy. The biodegradation of the LDPE sheet by N. phangngaensis was also confirmed by the Sturm test and analysis of enzymatic activities. The Sturm test showed the highest decomposition of the LDPE sheet by N. phangngaensis into CO<sub>2</sub> with 2.14 g/L after incubation. Enzymatic activities of laccase, manganese peroxidase, and lignin peroxidase enzymes were found by N. phangngaensis during the LDPE degradation. The volatile organic compounds in culture supernatant of N. phangngaensis were also investigated. The major compounds were 3Z-diethyl acetal hexenal, 2E,4E-decadienol, and 2Z-diethyl acetal hexenal. This study reveals the utilization of the fungus N. phangngaensis as the carbon source at a considerable biodegradation rate without any prior treatment. Therefore, the fungus N. phangngaensis may be applied as an alternative degrader for LDPE degradation in the environment.</p>","PeriodicalId":15842,"journal":{"name":"Journal of General and Applied Microbiology","volume":"68 6","pages":"287-294"},"PeriodicalIF":0.8000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General and Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2323/jgam.2022.07.001","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Low-density polyethylene (LDPE) has been commercially used and accumulated as plastic solid waste. LDPE has also been found to be a non-degradable waste for decades and found as a pollution source in the environment. In this study, 65 fungi were screened for their biodegradation of LDPE. The fungi Neopestalotiopsis phangngaensis, Alternaria burnsii, Alternaria pseudoeichhorniae, and Arthrinium sacchari showed significant potential in LDPE biodegradation. These fungi were individually cultured with an LDPE sheet as a carbon source for 90 days. A maximum weight loss of the LDPE sheet was detected by the fungus N. phangngaensis (54.34%). This fungus also revealed the highest reduction rate of tensile strength of the LDPE sheet (0.33 MPa). The morphological surface of LDPE culturing with N. phangngaensis was crack, pit, and rough analyzed by scanning electron microscopy. The biodegradation of the LDPE sheet by N. phangngaensis was also confirmed by the Sturm test and analysis of enzymatic activities. The Sturm test showed the highest decomposition of the LDPE sheet by N. phangngaensis into CO2 with 2.14 g/L after incubation. Enzymatic activities of laccase, manganese peroxidase, and lignin peroxidase enzymes were found by N. phangngaensis during the LDPE degradation. The volatile organic compounds in culture supernatant of N. phangngaensis were also investigated. The major compounds were 3Z-diethyl acetal hexenal, 2E,4E-decadienol, and 2Z-diethyl acetal hexenal. This study reveals the utilization of the fungus N. phangngaensis as the carbon source at a considerable biodegradation rate without any prior treatment. Therefore, the fungus N. phangngaensis may be applied as an alternative degrader for LDPE degradation in the environment.

新拟盘多毛孢对低密度聚乙烯的微生物降解。
低密度聚乙烯(LDPE)已作为塑料固体废物进行了商业利用和积累。几十年来,LDPE也被发现是一种不可降解的废物,并被发现是环境的污染源。本研究筛选了65种真菌对LDPE的生物降解能力。真菌Neopestalotiopsis phangngaensis、Alternaria burnsii、Alternaria pseudoeichhorniae和Arthrinium sacchari在LDPE的生物降解中表现出显著的潜力。这些真菌以LDPE片作为碳源单独培养90天。其中,phangngaensis对LDPE板材的减重最大(54.34%)。该菌对LDPE板材抗拉强度的降低率最高(0.33 MPa)。扫描电镜分析了攀云杉培养LDPE的形貌表面有裂纹、凹坑和粗糙。Sturm试验和酶活性分析也证实了N. phangngaensis对LDPE片的生物降解作用。Sturm试验表明,培养后,N. phangngaensis将LDPE板材分解为CO2的效率最高,为2.14 g/L。在LDPE降解过程中发现了漆酶、锰过氧化物酶和木质素过氧化物酶的活性。研究了攀钢菌培养上清液中挥发性有机物的含量。主要化合物为3z -二乙基缩醛己烯醛、2E、4e -十二烯醇和2z -二乙基缩醛己烯醛。本研究揭示了利用真菌N. phangngaensis作为碳源,无需任何预处理,具有相当高的生物降解率。因此,真菌N. phangngaensis可以作为环境中LDPE降解的替代降解剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of General and Applied Microbiology
Journal of General and Applied Microbiology 生物-生物工程与应用微生物
CiteScore
2.40
自引率
0.00%
发文量
42
审稿时长
6-12 weeks
期刊介绍: JGAM is going to publish scientific reports containing novel and significant microbiological findings, which are mainly devoted to the following categories: Antibiotics and Secondary Metabolites; Biotechnology and Metabolic Engineering; Developmental Microbiology; Environmental Microbiology and Bioremediation; Enzymology; Eukaryotic Microbiology; Evolution and Phylogenetics; Genome Integrity and Plasticity; Microalgae and Photosynthesis; Microbiology for Food; Molecular Genetics; Physiology and Cell Surface; Synthetic and Systems Microbiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信