{"title":"The Influence of Interface Design and External Frame on the Energy Absorption Performance of the Semi-Auxetic Structure.","authors":"Xuexia Zhang, Pengfei Yan, Biao Yan","doi":"10.1089/3dp.2021.0134","DOIUrl":null,"url":null,"abstract":"<p><p>In this article, four new semi-auxetic structures are designed by changing the way of interface connection and adding external frames. These structures were fabricated by fused deposition modeling, which is an additive manufacturing technology. The effects of interface design and external frame on deformation mode and energy absorption performance of semi-auxetic structure under quasi-static compression are studied. It was found that the deformation modes of framed and frameless structures are different. The specific energy absorption of the semi-auxetic structure is increased by ∼52% compared with the frameless hexagonal honeycomb structure. In addition, Abaqus was used to establish finite element models of the four new semi-auxetic structures and the frameless hexagonal honeycomb structure. It can be found that the simulation results were consistent with the experimental results.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 2","pages":"269-278"},"PeriodicalIF":2.3000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10133980/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2021.0134","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, four new semi-auxetic structures are designed by changing the way of interface connection and adding external frames. These structures were fabricated by fused deposition modeling, which is an additive manufacturing technology. The effects of interface design and external frame on deformation mode and energy absorption performance of semi-auxetic structure under quasi-static compression are studied. It was found that the deformation modes of framed and frameless structures are different. The specific energy absorption of the semi-auxetic structure is increased by ∼52% compared with the frameless hexagonal honeycomb structure. In addition, Abaqus was used to establish finite element models of the four new semi-auxetic structures and the frameless hexagonal honeycomb structure. It can be found that the simulation results were consistent with the experimental results.
期刊介绍:
3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged.
The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.