Man Liu, Hui Wang, Zijian Liu, Guangjing Liu, Wendi Wang, Xiaobing Li
{"title":"Exosomes from adipose-derived stem cells inhibits skin cancer progression via miR-199a-5p/SOX4.","authors":"Man Liu, Hui Wang, Zijian Liu, Guangjing Liu, Wendi Wang, Xiaobing Li","doi":"10.1080/02648725.2023.2204702","DOIUrl":null,"url":null,"abstract":"<p><p>Although miR-199a-5p is linked to the development of numerous cancers, its regulatory role in skin cancer is unclear. In this work, the impact of miR-199a-5p produced by adipose-derived stem cells on malignant melanoma skin cancer was investigated.30 pair tumor tissues and adjacent tissues were obtained from skin cancer patients. Adipose-derived stem cell (ADSCs) were isolated from adipose tissues harvested from healthy subjects. The mRNA relative expression was evaluated via qRT-PCR. Cell proliferation ability was measured via CCK-8 assay. Apoptosis was evaluated via flow cytometry. The connection between miR-199a-5p and SOX4 was confirmed via luciferase reporter assay. Western blot was conducted to evaluate protein expression. MiR-199a-5p was higher expressed in ADSCs exosomes and was lower expressed in skin cancer tissues and cells. ADSCs-derived exosomes inhibited cell invasion of skin cancer. MiR-199a-5p inhibitor enhanced cell viability and invasion. In addition, miR-199a-5p inhibitor suppressed cell apoptosis. MiR-199a-5p NC transfected ADSCs inhibited cell viability and invasion while miR-199a-5p mimic transfected ADSCs further inhibited cell viability and invasion. In addition, miR-199a-5p NC transfected ADSCs enhanced cell apoptosis while miR-199a-5p mimic transfected ADSCs further enhanced cell apoptosis. Luciferase supported the targetscan prediction that miR-199a-5p might control SOX4 expression. SOX4 expression was noticeably lower in the miR-199a-5p mimic group.Exosomes from adipose-derived stem cells inhibited skin cancer progression via miR-199a-5p/SOX4.</p>","PeriodicalId":55355,"journal":{"name":"Biotechnology & Genetic Engineering Reviews","volume":" ","pages":"3950-3962"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology & Genetic Engineering Reviews","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/02648725.2023.2204702","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/4/24 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although miR-199a-5p is linked to the development of numerous cancers, its regulatory role in skin cancer is unclear. In this work, the impact of miR-199a-5p produced by adipose-derived stem cells on malignant melanoma skin cancer was investigated.30 pair tumor tissues and adjacent tissues were obtained from skin cancer patients. Adipose-derived stem cell (ADSCs) were isolated from adipose tissues harvested from healthy subjects. The mRNA relative expression was evaluated via qRT-PCR. Cell proliferation ability was measured via CCK-8 assay. Apoptosis was evaluated via flow cytometry. The connection between miR-199a-5p and SOX4 was confirmed via luciferase reporter assay. Western blot was conducted to evaluate protein expression. MiR-199a-5p was higher expressed in ADSCs exosomes and was lower expressed in skin cancer tissues and cells. ADSCs-derived exosomes inhibited cell invasion of skin cancer. MiR-199a-5p inhibitor enhanced cell viability and invasion. In addition, miR-199a-5p inhibitor suppressed cell apoptosis. MiR-199a-5p NC transfected ADSCs inhibited cell viability and invasion while miR-199a-5p mimic transfected ADSCs further inhibited cell viability and invasion. In addition, miR-199a-5p NC transfected ADSCs enhanced cell apoptosis while miR-199a-5p mimic transfected ADSCs further enhanced cell apoptosis. Luciferase supported the targetscan prediction that miR-199a-5p might control SOX4 expression. SOX4 expression was noticeably lower in the miR-199a-5p mimic group.Exosomes from adipose-derived stem cells inhibited skin cancer progression via miR-199a-5p/SOX4.
期刊介绍:
Biotechnology & Genetic Engineering Reviews publishes major invited review articles covering important developments in industrial, agricultural and medical applications of biotechnology.