Federated Analysis in COINSTAC Reveals Functional Network Connectivity and Spectral Links to Smoking and Alcohol Consumption in Nearly 2,000 Adolescent Brains.
IF 2.7 4区 医学Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Harshvardhan Gazula, Kelly Rootes-Murdy, Bharath Holla, Sunitha Basodi, Zuo Zhang, Eric Verner, Ross Kelly, Pratima Murthy, Amit Chakrabarti, Debasish Basu, Subodh Bhagyalakshmi Nanjayya, Rajkumar Lenin Singh, Roshan Lourembam Singh, Kartik Kalyanram, Kamakshi Kartik, Kumaran Kalyanaraman, Krishnaveni Ghattu, Rebecca Kuriyan, Sunita Simon Kurpad, Gareth J Barker, Rose Dawn Bharath, Sylvane Desrivieres, Meera Purushottam, Dimitri Papadopoulos Orfanos, Eesha Sharma, Matthew Hickman, Mireille Toledano, Nilakshi Vaidya, Tobias Banaschewski, Arun L W Bokde, Herta Flor, Antoine Grigis, Hugh Garavan, Penny Gowland, Andreas Heinz, Rüdiger Brühl, Jean-Luc Martinot, Marie-Laure Paillére Martinot, Eric Artiges, Frauke Nees, Tomás Paus, Luise Poustka, Juliane H Fröhner, Lauren Robinson, Michael N Smolka, Henrik Walter, Jeanne Winterer, Robert Whelan, Jessica A Turner, Anand D Sarwate, Sergey M Plis, Vivek Benegal, Gunter Schumann, Vince D Calhoun
{"title":"Federated Analysis in COINSTAC Reveals Functional Network Connectivity and Spectral Links to Smoking and Alcohol Consumption in Nearly 2,000 Adolescent Brains.","authors":"Harshvardhan Gazula, Kelly Rootes-Murdy, Bharath Holla, Sunitha Basodi, Zuo Zhang, Eric Verner, Ross Kelly, Pratima Murthy, Amit Chakrabarti, Debasish Basu, Subodh Bhagyalakshmi Nanjayya, Rajkumar Lenin Singh, Roshan Lourembam Singh, Kartik Kalyanram, Kamakshi Kartik, Kumaran Kalyanaraman, Krishnaveni Ghattu, Rebecca Kuriyan, Sunita Simon Kurpad, Gareth J Barker, Rose Dawn Bharath, Sylvane Desrivieres, Meera Purushottam, Dimitri Papadopoulos Orfanos, Eesha Sharma, Matthew Hickman, Mireille Toledano, Nilakshi Vaidya, Tobias Banaschewski, Arun L W Bokde, Herta Flor, Antoine Grigis, Hugh Garavan, Penny Gowland, Andreas Heinz, Rüdiger Brühl, Jean-Luc Martinot, Marie-Laure Paillére Martinot, Eric Artiges, Frauke Nees, Tomás Paus, Luise Poustka, Juliane H Fröhner, Lauren Robinson, Michael N Smolka, Henrik Walter, Jeanne Winterer, Robert Whelan, Jessica A Turner, Anand D Sarwate, Sergey M Plis, Vivek Benegal, Gunter Schumann, Vince D Calhoun","doi":"10.1007/s12021-022-09604-4","DOIUrl":null,"url":null,"abstract":"<p><p>With the growth of decentralized/federated analysis approaches in neuroimaging, the opportunities to study brain disorders using data from multiple sites has grown multi-fold. One such initiative is the Neuromark, a fully automated spatially constrained independent component analysis (ICA) that is used to link brain network abnormalities among different datasets, studies, and disorders while leveraging subject-specific networks. In this study, we implement the neuromark pipeline in COINSTAC, an open-source neuroimaging framework for collaborative/decentralized analysis. Decentralized exploratory analysis of nearly 2000 resting-state functional magnetic resonance imaging datasets collected at different sites across two cohorts and co-located in different countries was performed to study the resting brain functional network connectivity changes in adolescents who smoke and consume alcohol. Results showed hypoconnectivity across the majority of networks including sensory, default mode, and subcortical domains, more for alcohol than smoking, and decreased low frequency power. These findings suggest that global reduced synchronization is associated with both tobacco and alcohol use. This proof-of-concept work demonstrates the utility and incentives associated with large-scale decentralized collaborations spanning multiple sites.</p>","PeriodicalId":49761,"journal":{"name":"Neuroinformatics","volume":"21 2","pages":"287-301"},"PeriodicalIF":2.7000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroinformatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12021-022-09604-4","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
With the growth of decentralized/federated analysis approaches in neuroimaging, the opportunities to study brain disorders using data from multiple sites has grown multi-fold. One such initiative is the Neuromark, a fully automated spatially constrained independent component analysis (ICA) that is used to link brain network abnormalities among different datasets, studies, and disorders while leveraging subject-specific networks. In this study, we implement the neuromark pipeline in COINSTAC, an open-source neuroimaging framework for collaborative/decentralized analysis. Decentralized exploratory analysis of nearly 2000 resting-state functional magnetic resonance imaging datasets collected at different sites across two cohorts and co-located in different countries was performed to study the resting brain functional network connectivity changes in adolescents who smoke and consume alcohol. Results showed hypoconnectivity across the majority of networks including sensory, default mode, and subcortical domains, more for alcohol than smoking, and decreased low frequency power. These findings suggest that global reduced synchronization is associated with both tobacco and alcohol use. This proof-of-concept work demonstrates the utility and incentives associated with large-scale decentralized collaborations spanning multiple sites.
期刊介绍:
Neuroinformatics publishes original articles and reviews with an emphasis on data structure and software tools related to analysis, modeling, integration, and sharing in all areas of neuroscience research. The editors particularly invite contributions on: (1) Theory and methodology, including discussions on ontologies, modeling approaches, database design, and meta-analyses; (2) Descriptions of developed databases and software tools, and of the methods for their distribution; (3) Relevant experimental results, such as reports accompanie by the release of massive data sets; (4) Computational simulations of models integrating and organizing complex data; and (5) Neuroengineering approaches, including hardware, robotics, and information theory studies.