{"title":"Ultrastructure of <i>Diophrys appendiculata</i> and new systematic consideration of the euplotid family Uronychiidae (Protista, Ciliophora).","authors":"Jingyi Dong, Yujie Liu, Jiyang Ma, Honggang Ma, Thorsten Stoeck, Xinpeng Fan","doi":"10.1007/s42995-022-00153-y","DOIUrl":null,"url":null,"abstract":"<p><p>The ultrastructure of ciliates carries important cytological, taxonomical, and evolutionary signals for these single-celled eukaryotic organisms. However, little ultrastructural data have been accumulated for most ciliate groups with systematic problems. In the present work, a well-known marine uronychiid, <i>Diophrys appendiculata</i>, was investigated using electron microscopy and a comparison with, and a discussion considering, phylogenetic analyses were made. The new findings primarily show that: (i) this species lacks the typical alveolar plate, bears cortical ampule-like extrusomes, and has microtubular triads in the dorsal pellicle, and thus exhibits some ultrastructural features in common with most of its previously studied congeners; (ii) each adoral membranelle before the level of frontal cirrus II/2 contains three rows of kinetosomes and each membranelle after the level of frontal cirrus II/2 contains four rows, which might be related with morphogenesis and could be considered as a distinctive character of <i>Diophrys</i>; (iii) some structural details of the buccal field, such as the extra-pellicular fibrils, pellicle, pharyngeal disks and microtubular sheet, were documented. In addition, based on the ultrastructural comparison of representatives, we discuss the differentiation between the subfamilies Diophryinae and Uronychiinae. A hypothetical systematic relationship of members in the order Euplotida based on a wide range of data is also provided.</p>","PeriodicalId":53218,"journal":{"name":"Marine Life Science & Technology","volume":"4 4","pages":"551-568"},"PeriodicalIF":5.8000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10077282/pdf/","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Life Science & Technology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42995-022-00153-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
The ultrastructure of ciliates carries important cytological, taxonomical, and evolutionary signals for these single-celled eukaryotic organisms. However, little ultrastructural data have been accumulated for most ciliate groups with systematic problems. In the present work, a well-known marine uronychiid, Diophrys appendiculata, was investigated using electron microscopy and a comparison with, and a discussion considering, phylogenetic analyses were made. The new findings primarily show that: (i) this species lacks the typical alveolar plate, bears cortical ampule-like extrusomes, and has microtubular triads in the dorsal pellicle, and thus exhibits some ultrastructural features in common with most of its previously studied congeners; (ii) each adoral membranelle before the level of frontal cirrus II/2 contains three rows of kinetosomes and each membranelle after the level of frontal cirrus II/2 contains four rows, which might be related with morphogenesis and could be considered as a distinctive character of Diophrys; (iii) some structural details of the buccal field, such as the extra-pellicular fibrils, pellicle, pharyngeal disks and microtubular sheet, were documented. In addition, based on the ultrastructural comparison of representatives, we discuss the differentiation between the subfamilies Diophryinae and Uronychiinae. A hypothetical systematic relationship of members in the order Euplotida based on a wide range of data is also provided.
期刊介绍:
Marine Life Science & Technology (MLST), established in 2019, is dedicated to publishing original research papers that unveil new discoveries and theories spanning a wide spectrum of life sciences and technologies. This includes fundamental biology, fisheries science and technology, medicinal bioresources, food science, biotechnology, ecology, and environmental biology, with a particular focus on marine habitats.
The journal is committed to nurturing synergistic interactions among these diverse disciplines, striving to advance multidisciplinary approaches within the scientific field. It caters to a readership comprising biological scientists, aquaculture researchers, marine technologists, biological oceanographers, and ecologists.