Liposome functionalized reduced graphene oxide for rapid electrochemical sensing of bacteria.

IF 1.6 4区 医学 Q4 BIOPHYSICS
Biointerphases Pub Date : 2023-03-01 DOI:10.1116/6.0002376
Shailendra Kumar, Juhi Jaiswal, Snehlata Yadav, Marshal Dhayal
{"title":"Liposome functionalized reduced graphene oxide for rapid electrochemical sensing of bacteria.","authors":"Shailendra Kumar,&nbsp;Juhi Jaiswal,&nbsp;Snehlata Yadav,&nbsp;Marshal Dhayal","doi":"10.1116/6.0002376","DOIUrl":null,"url":null,"abstract":"<p><p>Pathogenic bacteria represent a severe threat to global public health, particularly with the growing rate of antibiotic resistance, and, therefore, indicate a critical need for developing efficient sensing platforms. Liposome-based sensors are collocating interest due to their intrinsic fusogenic ability to fuse with the outer membrane of bacteria. However, the lack of a conducting property limits their applicability for developing biosensing platforms. In this study, we report conjugation of liposomes with reduced graphene oxide (rGO) for fabricating a rapid and sensitive biosensor for electrochemical detection of Escherichia coli (E. coli). The large surface area of rGO facilitated binding of liposomes with their surface, and the intrinsic electrical and biocompatible properties assisted electrochemical sensing of bacteria. The electrochemical response of the liposome and the rGO-liposome coated electrode shows nonconducting and conducting characteristics, respectively. A significant change in the peak current of differential pulse voltammetry with the gradual variation of bacterial density in the electrolyte was observed for the glassy carbon electrode rGO-liposome (GCE-L-rGO) surface only. The detection sensitivity of GCE-L-rGO sensors was ∼26 μA/106 cells per ml of electrolyte for varying cell densities from 3 × 103 to 3 × 104 cells/ml. The proposed sensing technique can serve as an alternative to conventional methodologies for rapid and in situ detection of bacterial load in different samples, laying the foundation for new applications in clinical diagnostics.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"18 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0002376","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Pathogenic bacteria represent a severe threat to global public health, particularly with the growing rate of antibiotic resistance, and, therefore, indicate a critical need for developing efficient sensing platforms. Liposome-based sensors are collocating interest due to their intrinsic fusogenic ability to fuse with the outer membrane of bacteria. However, the lack of a conducting property limits their applicability for developing biosensing platforms. In this study, we report conjugation of liposomes with reduced graphene oxide (rGO) for fabricating a rapid and sensitive biosensor for electrochemical detection of Escherichia coli (E. coli). The large surface area of rGO facilitated binding of liposomes with their surface, and the intrinsic electrical and biocompatible properties assisted electrochemical sensing of bacteria. The electrochemical response of the liposome and the rGO-liposome coated electrode shows nonconducting and conducting characteristics, respectively. A significant change in the peak current of differential pulse voltammetry with the gradual variation of bacterial density in the electrolyte was observed for the glassy carbon electrode rGO-liposome (GCE-L-rGO) surface only. The detection sensitivity of GCE-L-rGO sensors was ∼26 μA/106 cells per ml of electrolyte for varying cell densities from 3 × 103 to 3 × 104 cells/ml. The proposed sensing technique can serve as an alternative to conventional methodologies for rapid and in situ detection of bacterial load in different samples, laying the foundation for new applications in clinical diagnostics.

脂质体功能化还原氧化石墨烯用于细菌的快速电化学传感。
致病菌对全球公共卫生构成严重威胁,特别是随着抗生素耐药性的增长,因此迫切需要开发有效的传感平台。基于脂质体的传感器由于其内在的融合能力与细菌的外膜融合而引起了人们的兴趣。然而,缺乏导电特性限制了它们在开发生物传感平台方面的适用性。在这项研究中,我们报道了脂质体与还原氧化石墨烯(rGO)的偶联,用于制造一种快速灵敏的生物传感器,用于电化学检测大肠杆菌(E. coli)。氧化石墨烯的大表面积有助于脂质体与其表面的结合,其固有的电学和生物相容性有助于细菌的电化学传感。脂质体和氧化石墨烯脂质体包覆电极的电化学响应分别表现为不导电和导电特征。仅在玻碳电极rgo -脂质体(GCE-L-rGO)表面,差分脉冲伏安法的峰值电流随电解质中细菌密度的逐渐变化而发生显著变化。在3 × 103 ~ 3 × 104 cells/ml的电池密度范围内,GCE-L-rGO传感器的检测灵敏度为~ 26 μA/106 cells/ml。该传感技术可作为传统方法的替代方法,用于快速和原位检测不同样品中的细菌负荷,为临床诊断的新应用奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biointerphases
Biointerphases 生物-材料科学:生物材料
自引率
0.00%
发文量
35
期刊介绍: Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee. Topics include: bio-surface modification nano-bio interface protein-surface interactions cell-surface interactions in vivo and in vitro systems biofilms / biofouling biosensors / biodiagnostics bio on a chip coatings interface spectroscopy biotribology / biorheology molecular recognition ambient diagnostic methods interface modelling adhesion phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信