Rapamycin encourages the maintenance of mitochondrial dynamic balance and mitophagy activity for improving developmental competence of blastocysts in porcine embryos in vitro
Hyo-Jin Park, Gyeong-Deok Heo, Seul-Gi Yang, Deog-Bon Koo
{"title":"Rapamycin encourages the maintenance of mitochondrial dynamic balance and mitophagy activity for improving developmental competence of blastocysts in porcine embryos in vitro","authors":"Hyo-Jin Park, Gyeong-Deok Heo, Seul-Gi Yang, Deog-Bon Koo","doi":"10.1002/mrd.23681","DOIUrl":null,"url":null,"abstract":"<p>Rapamycin induces autophagosome formation and activity during oocyte maturation, improved fertilization ability of matured oocytes, and early embryonic developmental competence. However, potential changes in mitochondrial fission and mitophagy via regulation of autophagy in early porcine embryonic development have not been previously studied. Here, we investigated embryonic developmental ability and quality of porcine embryos 2 days after in vitro fertilization and following treatment with 1 and 10 nM rapamycin. As a results, 1 nM rapamycin exposure significantly improved (<i>p</i> < 0.05) blastocyst developmental competence compared to that in nontreated embryos (nontreated: 26.2 ± 5.7% vs. 1 nM rapamycin: 35.3 ± 5.1%). We observed autophagic (LC3B) and mitochondrial fission protein expression (dynamin-related protein-1 [DRP1] and pDRP1-Ser616) at the cleavage stage of 1 and 10 nM rapamycin-treated porcine embryos, using Western blot and immunofluorescence analyses. Interestingly, 1 nM rapamycin treatment significantly improved autophagy formation, mitochondrial activation, and mitochondrial fission protein levels (<i>p</i> < 0.05; p-DRP1 [Ser616]) at the cleavage stage of porcine embryos. Additionally, mitophagy was significantly increased in blastocysts treated with 1 nM rapamycin. In conclusion, our results suggest that rapamycin promotes blastocyst development ability in porcine embryos through mitochondrial fission, activation, and mitophagy in in vitro culture.</p>","PeriodicalId":18856,"journal":{"name":"Molecular Reproduction and Development","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Reproduction and Development","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mrd.23681","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Rapamycin induces autophagosome formation and activity during oocyte maturation, improved fertilization ability of matured oocytes, and early embryonic developmental competence. However, potential changes in mitochondrial fission and mitophagy via regulation of autophagy in early porcine embryonic development have not been previously studied. Here, we investigated embryonic developmental ability and quality of porcine embryos 2 days after in vitro fertilization and following treatment with 1 and 10 nM rapamycin. As a results, 1 nM rapamycin exposure significantly improved (p < 0.05) blastocyst developmental competence compared to that in nontreated embryos (nontreated: 26.2 ± 5.7% vs. 1 nM rapamycin: 35.3 ± 5.1%). We observed autophagic (LC3B) and mitochondrial fission protein expression (dynamin-related protein-1 [DRP1] and pDRP1-Ser616) at the cleavage stage of 1 and 10 nM rapamycin-treated porcine embryos, using Western blot and immunofluorescence analyses. Interestingly, 1 nM rapamycin treatment significantly improved autophagy formation, mitochondrial activation, and mitochondrial fission protein levels (p < 0.05; p-DRP1 [Ser616]) at the cleavage stage of porcine embryos. Additionally, mitophagy was significantly increased in blastocysts treated with 1 nM rapamycin. In conclusion, our results suggest that rapamycin promotes blastocyst development ability in porcine embryos through mitochondrial fission, activation, and mitophagy in in vitro culture.
期刊介绍:
Molecular Reproduction and Development takes an integrated, systems-biology approach to understand the dynamic continuum of cellular, reproductive, and developmental processes. This journal fosters dialogue among diverse disciplines through primary research communications and educational forums, with the philosophy that fundamental findings within the life sciences result from a convergence of disciplines.
Increasingly, readers of the Journal need to be informed of diverse, yet integrated, topics impinging on their areas of interest. This requires an expansion in thinking towards non-traditional, interdisciplinary experimental design and data analysis.