Yunxia Liang, Bimal Chitrakar, Zhenbin Liu, Xujia Ming, Dan Xu, Haizhen Mo, Chunyang Shi, Xiaolin Zhu, Liangbin Hu, Hongbo Li
{"title":"Preparation and characterization of 3D-printed antibacterial hydrogel with benzyl isothiocyanate.","authors":"Yunxia Liang, Bimal Chitrakar, Zhenbin Liu, Xujia Ming, Dan Xu, Haizhen Mo, Chunyang Shi, Xiaolin Zhu, Liangbin Hu, Hongbo Li","doi":"10.18063/ijb.v9i2.671","DOIUrl":null,"url":null,"abstract":"<p><p>Benzyl isothiocyanate (BITC) is an isothiocyanate of plant origin, especially the mustard family, which has good antibacterial properties. However, its applications are challenging due to its poor water solubility and chemical instability. We used food hydrocolloids, including xanthan gum, locust bean gum, konjac glucomannan, and carrageenan as three-dimensional (3D)-printing food ink base and successfully prepared 3D-printed BITC antibacterial hydrogel (BITC-XLKC-Gel). The characterization and fabrication procedure of BITC-XLKC-Gel was studied. The results show that BITC-XLKC-Gel hydrogel has better mechanical properties by low-field nuclear magnetic resonance (LF-NMR), mechanical properties, and rheometer analysis. The strain rate of BITC-XLKC-Gel hydrogel is 76.5%, which is better than that of human skin. Scanning electron microscope (SEM) analysis showed that BITC-XLKC-Gel has uniform pore size and provides a good carrier environment for BITC carriers. In addition, BITC-XLKC-Gel has good 3D-printing performance, and 3D printing can be used for customizing patterns. Finally, inhibition zone analysis showed that the BITC-XLKC-Gel added with 0.6% BITC had strong antibacterial activity against <i>Staphylococcus aureus</i> and the BITC-XLKC-Gel added with 0.4% BITC had strong antibacterial activity against <i>Escherichia coli</i>. Antibacterial wound dressing has always been considered essential in burn wound healing. In experiments that simulated burn infection, BITC-XLKC-Gel showed good antimicrobial activity against methicillin-resistant <i>S. aureus</i>. BITC-XLKC-Gel is a good 3D-printing food ink attributed to strong plasticity, high safety profile, and good antibacterial performance and has great application prospects.</p>","PeriodicalId":48522,"journal":{"name":"International Journal of Bioprinting","volume":"9 2","pages":"671"},"PeriodicalIF":6.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/3d/ce/IJB-9-2-671.PMC10090813.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bioprinting","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.18063/ijb.v9i2.671","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 3
Abstract
Benzyl isothiocyanate (BITC) is an isothiocyanate of plant origin, especially the mustard family, which has good antibacterial properties. However, its applications are challenging due to its poor water solubility and chemical instability. We used food hydrocolloids, including xanthan gum, locust bean gum, konjac glucomannan, and carrageenan as three-dimensional (3D)-printing food ink base and successfully prepared 3D-printed BITC antibacterial hydrogel (BITC-XLKC-Gel). The characterization and fabrication procedure of BITC-XLKC-Gel was studied. The results show that BITC-XLKC-Gel hydrogel has better mechanical properties by low-field nuclear magnetic resonance (LF-NMR), mechanical properties, and rheometer analysis. The strain rate of BITC-XLKC-Gel hydrogel is 76.5%, which is better than that of human skin. Scanning electron microscope (SEM) analysis showed that BITC-XLKC-Gel has uniform pore size and provides a good carrier environment for BITC carriers. In addition, BITC-XLKC-Gel has good 3D-printing performance, and 3D printing can be used for customizing patterns. Finally, inhibition zone analysis showed that the BITC-XLKC-Gel added with 0.6% BITC had strong antibacterial activity against Staphylococcus aureus and the BITC-XLKC-Gel added with 0.4% BITC had strong antibacterial activity against Escherichia coli. Antibacterial wound dressing has always been considered essential in burn wound healing. In experiments that simulated burn infection, BITC-XLKC-Gel showed good antimicrobial activity against methicillin-resistant S. aureus. BITC-XLKC-Gel is a good 3D-printing food ink attributed to strong plasticity, high safety profile, and good antibacterial performance and has great application prospects.
期刊介绍:
The International Journal of Bioprinting is a globally recognized publication that focuses on the advancements, scientific discoveries, and practical implementations of Bioprinting. Bioprinting, in simple terms, involves the utilization of 3D printing technology and materials that contain living cells or biological components to fabricate tissues or other biotechnological products. Our journal encompasses interdisciplinary research that spans across technology, science, and clinical applications within the expansive realm of Bioprinting.